Abstract

Each of the ~1011 neurons that constitute the human nervous system, ~1010 of which are in the cerebral cortex, is surrounded by and, to some extent, symbiotic with satellite cells1 (glial cells in the CNS; Schwann cells, amphicytes, and teloblasts in the peripheral NS) but is nonetheless an independent cellular unit, functionally as well as metabolically. Up-to-date techniques of electrophysiology and morphology (especially histochemistry and electron microscopy) have refuted “reticularist” and “continuist” theories that culminated in the delusion of the “Terminalretikulum”2 and have proved the full validity of the classical concept formulated by Waldeyer, Lenhossék, and Cajal according to which every neuron represents an independent entity in terms of anatomy (dendrites and axon are cytoplasmic appendages of the perikaryon; each neuron is an independent cellular unit surrounded by an uninterrupted cell membrane; neurons are contiguous but not continuous with each other), physiology (the nerve impulse proceeds unimpeded within the domain of the neuron but has to “jump” to the next neuron at the synapse), genesis (all portions of the neuron, i.e., perikaryon, dendrites, and axon derive from the same single neuroblast of ectodermal origin), and trophism (the distal stump of a transected axon undergoes Wallerian degeneration; regeneration starts from the proximal stump; the trophic center of the neuron is the perikaryon).

Keywords

Nerve Growth Factor Nerve Cell AChE Activity Rough Endoplasmic Reticulum Vasoactive Intestinal Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Varon, S., and Somjen, G. G., 1979, Neuron—glia interactions, Neurosci. Res. Program Bull. 17: 3–239.Google Scholar
  2. 2.
    Stöhr, P., Jr., 1957, Mikroskopische Anatomie des Vegetativen Nervensystems, Móllendorff s Handbuch der Mikroskopischen Anatomie des Menschen, Volume IV, Part 5, Springer, Berlin.Google Scholar
  3. 3.
    Novikoff, P. M., Novikoff, A. B., Quintana, N., and Hauw, J. J., 1971, J. Cell Biol. 50: 859–886.PubMedCrossRefGoogle Scholar
  4. 4.
    Csillik, B., 1975, Int. Rev. Neurohiol. 18: 69–140.CrossRefGoogle Scholar
  5. 5.
    Heiwall, P.-O., Larsson, P.-A., and Dahlstöm, A., 1978, Acta Physiol. Scand. 104: 156–166.PubMedCrossRefGoogle Scholar
  6. 6.
    Ng, M., and Matus, A., 1979, Neuroscience 4: 169–180.PubMedCrossRefGoogle Scholar
  7. 7.
    Takahashi, K., and Wood, R. L.. 1970, Z. Zellforsch. 110: 311–320.PubMedCrossRefGoogle Scholar
  8. 8.
    Westrum. L. E., Jones. D. H., Gray, E. G., and Barron, J., 1980, Cell Tissue Res. 208: 171–181.Google Scholar
  9. 9.
    Gray, E. G., 1978, Proc. R. Soc. (Gond.) [Biol.] 203: 219–227.CrossRefGoogle Scholar
  10. 10.
    Csillik, B., and Knyihâr-Csillik, E., 1980, Acta Biol. Acad. Sci. Hung. 31: 49–56.PubMedGoogle Scholar
  11. 11.
    Herman, C. J., and Lapham, L. W., 1968, Science 160: 537.PubMedCrossRefGoogle Scholar
  12. 12.
    Moore, B. W., 1972, Int. Rev. Neurobiol. 15: 215–225.PubMedCrossRefGoogle Scholar
  13. 13.
    Grasso, A., and Pirazzi, R., 1975, Brain Res. 90: 324–328.PubMedCrossRefGoogle Scholar
  14. 14.
    Bock, E., 1978, J. Neurochem. 30: 7–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Mikoshiba, K., Mallet, J.. and Changeux, J. P., 1977, Proc. Int. Soc. Neurochem. 6: 283.Google Scholar
  16. 16.
    Iqbal, K., Grundke-Iqbal, I., Terry, R. D., and Wisniewski, H. M., 1977, Mechanism, Regulation and Special Function of Protein Synthesis in the Brain (S. Roberts, A. Lajtha. and W. H. Gispen, eds.), Elsevier/North Holland Biomedical Press. Amsterdam, pp. 171–179.Google Scholar
  17. 17.
    Hemminki, K., 1973, Biochim. Biophys. Acta 310: 285–288.PubMedCrossRefGoogle Scholar
  18. 18.
    Forgue, S. T., and Dahl, J. L., 1978, J. Neurochem. 31: 1289–1297.PubMedCrossRefGoogle Scholar
  19. 19.
    Bray, D., 1977, Biochimie 59: 1–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Unsicker, K., Drenckhahn, D., Gröschel-Stewart, U., Schumacher. U., and Griesser, G. H., 1978, Neuroscience 3: 301–306.PubMedCrossRefGoogle Scholar
  21. 21.
    Isenberg, G., Schubert, P., and Kreutzberg, G. W., 1980, Brain Res. 194: 588–593.PubMedCrossRefGoogle Scholar
  22. 22.
    Shelanski, M. L., Liem, R., and Yen, S.-H., Mechanisms, Regulation and Special Function of Protein Synthesis in the Brain (S. Roberts, A. Lajtha, and W. H. Gispen, eds.), Elsevier/ North Holland Biomedical Press, Amsterdam, pp. 137–152.Google Scholar
  23. 23.
    Davison, P. F., and Winslow, B., 1974, J. Neurobiol. 5: 119–133.PubMedCrossRefGoogle Scholar
  24. 24.
    Lasek, R. J., and Hoffmann, P., 1976, Cell Motility, Volume C (R. Goldman. T. Pollard, and J. Rosenbaum, eds.). Cold Spring Harbor Laboratory, New York, pp. 1021–1050.Google Scholar
  25. 25.
    Chee, P. Y., and Dahl, J. L., 1978, J. Neurochem. 30: 1485–1493.PubMedCrossRefGoogle Scholar
  26. 26.
    Csillik, B., 1980, Neurotransmitters. Comparative Aspects (J. Salânki and T. M. Turpaev, eds.), Akadémiai Kiadó, Budapest, pp. 149–189.Google Scholar
  27. 27.
    Hosein, E. A., Proulx, P., and Ara, R., 1962, Biochem. J. 83: 341–346.PubMedGoogle Scholar
  28. 28.
    Collier, B., Lovat, S., Ilson, D., Barker, L. A., and Mittag, T. W., 1977, J. Neurochem. 28: 331–339.PubMedCrossRefGoogle Scholar
  29. 29.
    Saavedra, J. M., Coyle, J. T., and Axelrod, J., 1974, J. Neurochem. 23: 511–515.PubMedCrossRefGoogle Scholar
  30. 30.
    Curtis, D. R., and Johnston, G. A. R., 1974, Ergeb. Physiol. 29: 97–188.Google Scholar
  31. 31.
    Baskin, S. I., Leibman, A. J., and Cohn, E. M., 1976, Adv. Biochem. Psychopharmacol. 15: 153–164.Google Scholar
  32. 32.
    Schultzberger, M., Hökfelt, T., Terenius, L., Elfvin, L.-G., Lundberg, J. M., Brandt, J., Elde, R. P., and Goldstein, M., 1979, Neuroscience 4: 249–270.CrossRefGoogle Scholar
  33. 33.
    Hökfelt, T., Elde, R., Johansson, O., Luft, R., Nilsson, G., and Arimura, A., 1976, Neuroscience 1: 131–136.PubMedCrossRefGoogle Scholar
  34. 34.
    Uhl, G. R., and Snyder, S. H., 1977, Life Sci. 19: 1827–1832.CrossRefGoogle Scholar
  35. 35.
    Swanson, L. W., and McKeller, S., 1979, J. Comp. Neurol. 188: 87–106.PubMedCrossRefGoogle Scholar
  36. 36.
    Fuxe, K., Hökfelt, T., Said, S. I., and Mutt, V., 1977, Neurosci. Leu. 5: 241–246.Google Scholar
  37. 37.
    Csillik, B., and Knyihâr, E., 1968, Acta Biochim. Biophys. Acad. Sci. Hung .3:165–170.Google Scholar
  38. 38.
    Kreutzberg, G. W., Tóth, L., and Kaiya, H., 1975, Adv. Neurol. 12: 269–281.PubMedGoogle Scholar
  39. 39.
    Fernandez, H. L., Duell, M. J., and Festoff, B. W., 1979, J. Neurobiol. 10 (5): 441–454.PubMedCrossRefGoogle Scholar
  40. 40.
    Csillik, B., 1965, Functional Structure of the Post-Synaptic Membrane in the Myoneural Junction, Academy Publishing House, Budapest.Google Scholar
  41. 41.
    Csillik, B., and Tóth, L., 1972, J. Histochem. Cytochem. 20: 385–387.PubMedCrossRefGoogle Scholar
  42. 42.
    Heiwall, P.-O., Larsson, P. A., and Dahlström, A., 1978, Acta Physiol. Scand. 104: 156–166.PubMedCrossRefGoogle Scholar
  43. 43.
    Joh, T. H., and Reis, D. J., 1975, Brain Res. 85: 146–151.PubMedCrossRefGoogle Scholar
  44. 44.
    Falck, B., Hillarp, N.-A., Thieme, G., and Torp, A., 1962, J. Histochem. Cytochem. 10: 348–354.CrossRefGoogle Scholar
  45. 45.
    Bloom, F. E., and Battenberg, E. L. T., 1976, J. Histochem. Cytochem. 24: 561–571.PubMedCrossRefGoogle Scholar
  46. 46.
    Hökfelt, T., Fuxe, K., and Goldstein, M., 1973, Brain Res. 62: 461–469.PubMedCrossRefGoogle Scholar
  47. 47.
    Goldstein, M., Anagnoste, B., Freedman, L. S., Roffman, M., Ebstein, R. P., Park, D. H., Fuxe, K., and Hökfelt, T., 1973, Frontiers in Catecholamine Research (E. Usdin and S. Snyder, eds.), Pergamon Press, New York, pp. 69–78.Google Scholar
  48. 48.
    Knyihâr, E., 1971, Experientia 27: 1205–1207.PubMedCrossRefGoogle Scholar
  49. 49.
    Collingridge, G. L., and Keen, P., 1978. J. Neurochem. 31: 681–684.PubMedCrossRefGoogle Scholar
  50. 50.
    Burnstock, G., 1976, Neuroscience 1: 239–248.PubMedCrossRefGoogle Scholar
  51. 51.
    Dismukes, R. K., 1979, Behay. Brain 2: 409–418.CrossRefGoogle Scholar
  52. 52.
    Daly, J. W., Hoffer, B. J., and Dismukes, R. K., 1980, Neurosci. Res. Program Bull. 18 (3): 325–456.PubMedGoogle Scholar
  53. 53.
    Rakic, P., 1976, Local Circuit Neurons, MIT Press, Cambridge, Massachusetts.Google Scholar
  54. 54.
    Ralston, H. J. II1., 1971, Nature 230: 585–587.PubMedCrossRefGoogle Scholar
  55. 55.
    Harding, B. N., and Powell, T. P. S.. 1977. Phil. Trans. R. Soc. Land [Biol.], 279: 357–412.CrossRefGoogle Scholar
  56. 56.
    Jahr, C. E., and Nicoll, R. A., 1980, Science 207: 1473–1475.PubMedCrossRefGoogle Scholar
  57. 57.
    Sidman, R. L., Miale, I. L., and Feder, N., 1959, Exp. Neurol. 1: 322–333.PubMedCrossRefGoogle Scholar
  58. 58.
    Sancerre, R., and Rich, A., 1976, Dev. Biol. 54: 1–12.CrossRefGoogle Scholar
  59. 59.
    Balâzs, R., 1974, Br. Med. Bull. 30: 126–134.PubMedGoogle Scholar
  60. 60.
    Rebière, A., and Legrand, J., 1972. C. R. Acad. Sci [D] (Paris) 274: 3581–3584.Google Scholar
  61. 61.
    Jacobson, M., 1978, Developmental Neurobiology, 2nd ed. Plenum Press, New York.Google Scholar
  62. 62.
    Pitot, H. C., and Yatvin, M. D., 1973. Physiol. Rev. 53: 228–325.PubMedGoogle Scholar
  63. 63.
    Weichsel, M. E., Jr., 1974, Brain Res. 78: 455–465.PubMedCrossRefGoogle Scholar
  64. 64.
    Stumpf, W. E., 1971, J. Neuro-Visceral Relations [Suppl.] 10: 51–64.Google Scholar
  65. 65.
    Prestige, M. C., 1967, J. Embryol. Exp. Morphol. 17: 453–471.PubMedGoogle Scholar
  66. 66.
    Glücksmann, A., 1951, Biol. Rev. 26: 59–86.CrossRefGoogle Scholar
  67. 67.
    Cowan, W. M., 1973, Development and Aging in the Nervous System (M. Rockstein and M. L. Sussman, eds.), Academic Press, New York, London, pp. 19–41.CrossRefGoogle Scholar
  68. 68.
    Prestige, M. C., 1965, J. Embryo(. Exp. Morphol. 13: 63–72.Google Scholar
  69. 69.
    O’Connor, T. M., and Wyttenbach, C. R., 1974, J. Cell Biol. 60: 448–459.PubMedCrossRefGoogle Scholar
  70. 70.
    Saunders, J. W., 1966, Science 154: 604–612.PubMedCrossRefGoogle Scholar
  71. 71.
    Webster, D. A., and Gross, J.. 1970, Dev. Biol. 22: 157–184.PubMedCrossRefGoogle Scholar
  72. 72.
    Bondareff, W., and Liu-Liu, S., 1977, A,n. J. Anat. 148: 57–64.CrossRefGoogle Scholar
  73. 73.
    Wall, P. D., 1977, Phil. Trans. R. Soc. Lond. [Biol.] 278: 361–372.CrossRefGoogle Scholar
  74. 74.
    Plum, F., Gjedde, A., and Samson, F. E., 1976, Neurosci. Res. Program Bull. 14 (4): 457–518.Google Scholar
  75. 75.
    Lieberman, A. R., 1974. Essays on the Nervous System (R. Bellairs and E. G. Gray, eds.), Calderon Press, Oxford, pp. 71–105.Google Scholar
  76. 76.
    Bulger, V. T., and Bisby, M. A., 1978, J. Neurochem. 31: 1411–1418.PubMedCrossRefGoogle Scholar
  77. 77.
    Grafstein, B., 1975, Exp. Neurol. 48: 32–51.PubMedCrossRefGoogle Scholar
  78. 78.
    Cragg, B. G., 1970, Brain Res. 23: 1–21.PubMedCrossRefGoogle Scholar
  79. 79.
    Matsumoto, T., 1920, Bull. Johns Hopkins Hosp. 30: 91–93.Google Scholar
  80. 80.
    Prestige, M. C., 1970. The Neurosciences. Second Study Program (F. O. Schmitt, ed.), Rockefeller University Press, New York, pp. 73–82.Google Scholar
  81. 81.
    Stoeckel, K., Schwab, M., and Thoenen, H., 1975, Brain Res. 89: 1–14.PubMedCrossRefGoogle Scholar
  82. 82.
    Paravicini, V., Stoeckel. K., and Thoenen. H., 1975, Brain Res. 84: 279–291.PubMedCrossRefGoogle Scholar
  83. 83.
    McClure, W. O., 1972. Adv. Pharmacol. Chemother. 10: 185–220.CrossRefGoogle Scholar
  84. 84.
    Karlsson, J.-O., 1979, J. Neurochem. 32: 491–494.PubMedCrossRefGoogle Scholar
  85. 85.
    Albuquerque, E. S., Warmick, J. E., Tasse, J. R., and Sansone, F. M.. 1972, Exp. Neurol. 37:607-634.Google Scholar
  86. 86.
    Pilar, G., and Landmesser. L., 1972, Science 177:1116–1118.Google Scholar
  87. 87.
    Aguilar, C. E., Bisby, M. A., Cooper, E., and Diamond, J., 1973, J. Physiol. (Lond.) 234: 449–464.Google Scholar
  88. 88.
    Bisby, M. A., and Bulger, V. T., 1977, J. Neurochem. 29: 313–320.PubMedCrossRefGoogle Scholar
  89. 89.
    Diamond, J., Cooper, E., Turner, C., and McIntyre, L., 1976, Science 193: 371–377.PubMedCrossRefGoogle Scholar
  90. 90.
    Theiler, R. F., and McClure, W. O., 1978, J. Neurochem. 31: 433–447.PubMedCrossRefGoogle Scholar
  91. 91.
    Knyihâr, E., and Csillik, B., 1976, Exp. Brain Res. 26: 73–87.PubMedCrossRefGoogle Scholar
  92. 92.
    Csillik, B., and Knyihâr, E., 1976, Neuron Concept Today (J. Szentâgothai, J. Hâmori and E. S. Vizi, eds.) Akadémiai Kiadó, Budapest, pp. 27–38.Google Scholar
  93. 93.
    Csillik, B., Knyihâr, E., Jójârt, I., Elshiekh, A. A.. and Pór, I., 1978. Res. Commun. Chem. Pathol. Pharmacol. 21: 467–484.PubMedGoogle Scholar
  94. 94.
    Marks, N., and Lajtha, A., 1971, Handbook of Neurochemistry, Volume 5A (A. Lajtha, ed.), Plenum Press, New York, pp. 49–139.Google Scholar
  95. 95.
    Guroff, G., 1964, J. Biol. Chem. 239: 149–155.PubMedGoogle Scholar
  96. 96.
    Hodgkin, A. L., and Katz, B., 1949, J. Exp. Biol. 26: 292–294.PubMedGoogle Scholar
  97. 97.
    Gilbert, D. S., Newby, B. J., and Anderton, B. H., 1975, Nature 256: 586–589.PubMedCrossRefGoogle Scholar
  98. 98.
    Stefanovic, V., Ledig, M.. and Mandel, P., 1976. J. Neurochem. 27: 799–805.PubMedCrossRefGoogle Scholar
  99. 99.
    Pant, H. C., Terekawa, S., and Gainer, H., 1979, J. Neurochem. 32: 99–102.PubMedCrossRefGoogle Scholar
  100. 100.
    Llinâs, R. R., and Heuser, J. E., 1977, Depolarization-release coupling systems in neurons. Neurosci. Res. Program Bull. 15 (4): 557–687.Google Scholar
  101. 101.
    Wolff, D. J., and Siegel, F. L.. 1972, J. Biol. Chen. 247: 4180–4185.Google Scholar
  102. 102.
    Alema, S.. Calissano, P.. Rusca. G., and Giuditta, A., 1973. J. Neurochem. 20: 681–689.PubMedCrossRefGoogle Scholar
  103. 103.
    Childers, S. R., and Siegel, F. L., 1975, Biochim. Biophys. Acta 405: 99–108.PubMedCrossRefGoogle Scholar
  104. 104.
    Iqbal, Z.. and Ochs, S., 1978, J. Neurochem. 31: 409–418.PubMedCrossRefGoogle Scholar
  105. 105.
    Droz, B., 1973, Brain Res. 62: 383–394.PubMedCrossRefGoogle Scholar
  106. 106.
    Marks, N., Benuck, M.. and Grynbaum, A., 1977, Mechanism, Regulation and Specific Functions of Protein Synthesis in the Brain (S. Roberts, A. Lajtha, and W. H. Gispen, eds.), Elsevier/North-Holland Biomedical Press, Amsterdam, pp. 355–372.Google Scholar
  107. 107.
    Lasek, R. J., and Black. M. M., 1977, Mechanism, Regulation and Specific Functions of Protein Synthesis in the Brain (S. Roberts, A. Lajtha, and W. H. Gispen. eds.). Elsevier/ North-Holland Biomedical Press, pp. 161–169.Google Scholar
  108. 108.
    Csillik, B., and Sâvay, G., 1963. Nature, 198: 399.PubMedCrossRefGoogle Scholar
  109. 109.
    Palânkai, G., Sâvay, G.. and Poberai. M., 1978, Acta Histochem. (Jena) 62: 170–175.CrossRefGoogle Scholar
  110. 110.
    Poberai, M., Sâvay, G., and Csillik, B., 1972, Neurobiology 2: 1–7.PubMedGoogle Scholar
  111. 111.
    Poberai, M., and Sâvay. G., 1976. Acta Histochem. (Jena) 57: 44–48.CrossRefGoogle Scholar
  112. 112.
    Csillik, B., 1974, J. Neural Trans. [Suppl.] 11: 13–42.Google Scholar
  113. 113.
    Jain, M. F., 1972, The Bimolecular Lipid Membrane. Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Bert Csillik
    • 1
  1. 1.Department of AnatomyUniversity Medical SchoolSzegedHungary

Personalised recommendations