Skip to main content

Abstract

According to the traditional concept1–3 of cation transport, there are “active” and “passive” fluxes: the former drives cations uphill (against an electrochemical gradient) at the expense of ATP consumption, whereas the latter moves cations downhill (in the direction of the electrochemical gradient) by simple diffusion across membrane “imperfections” or “pores.” This traditional concept of active and passive cation fluxes has proved to be inadequate for two main reasons.4–11 (1) It has been demonstrated that the “active” pump transporting both Na+ and K+, usually uphill, by direct consumption of ATP can also drive cation movements “on the level” (i.e., in the absence of any concentration gradient) or even downhill.4,5 (2) Evidence has been collected that demonstrates that “passive” fluxes of cations are highly organized and are closely associated with important physiological functions6: many of them take place as part of counter- or cotransport mechanisms.5–9 Thus, the energy of the electrochemical gradient of the cation actually moving downhill is not dissipated but is mostly consumed in promotion of the transport of different compounds (e.g., sugars, amino acids, other cations), in some cases even against a concentration gradient. In this way, “passive” fluxes of cations moving downhill can build up a concentration gradient for other cations without any waste of ATP.5–9 Selectivity of the membrane for some “passive” cation fluxes enables it to convert the energy of primary ionic gradients into the energy needed for the maintenance of resting membrane potential as well as for cell excitation.6,10,11

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg, T., 1948, Acta Chem. Scand. 2: 14–28.

    CAS  Google Scholar 

  2. Ussing, H. H., 1949, Acta Physiol. Scand. 19: 43–67.

    CAS  Google Scholar 

  3. Koefoed-Johnsen, V., and Ussing, H. H., 1960, Mineral Metabolism, Volume 1 (C. L. Comar and F. Bronner, eds.), Academic Press, New York, London, pp. 169–203.

    Google Scholar 

  4. Glynn, I. M., and Karlish, S. J. D., 1975, Biochem. Soc. Spec. Publ. 4: 145–158.

    Google Scholar 

  5. Sarkadi, B., and Tosteson, D. C., 1979, Membrane Transport in Biology, Volume 2 (D. C. Tosteson, ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 117–160.

    Google Scholar 

  6. Lew, V. L., and Beaugé, L., 1979, Membrane Transport in Biology, Volume 2 (D. C. Toste-son, ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 81–116.

    Google Scholar 

  7. Schultz, S. G., and Curran, P. F., 1970, Physiol. Rev. 50: 637–656.

    PubMed  CAS  Google Scholar 

  8. Crane, R. K., 1977, Rev. Physiol. Biochem. Pharmacol. 78: 99–159.

    PubMed  CAS  Google Scholar 

  9. Gunn, R. B., 1980, Annu. Rev. Physiol. 42: 249–259.

    PubMed  CAS  Google Scholar 

  10. French, R. J., and Adelman, W. J., Jr., 1976, Current Topics in Membranes and Transport, Volume 8 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 161–207.

    Google Scholar 

  11. Blumenthal, R., Changeux, J. P., and Lefever, R., 1970, J. Membr. Biol. 2: 351–374.

    Google Scholar 

  12. Nicolau, C., and Paraf, A. (eds.), 1977, Structural and Kinetic Approach to Plasma Membrane Functions, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  13. Stein, W. D., Lieb, W. R.. Karlish, S. J. D., and Eilam, Y., 1973, Proc. Natl. Acad. Sci. U.S.A. 70: 275–278.

    PubMed  CAS  Google Scholar 

  14. Garrahan, P. J., and Garay. R. P., 1976, Current Topics in Membranes and Transport, Volume 8 (F. Bronner and A. Kleinzeller, eds.), Academic Press, New York, pp. 29–97.

    Google Scholar 

  15. Wallick, E. T., Lane, L. K.. and Schwartz, A., 1979, Annu. Rev. Phsyiol. 41: 397–411.

    CAS  Google Scholar 

  16. Hodgkin, A. L., and Katz. B., 1949, J. Physiol. (Load.) 108: 37–54.

    CAS  Google Scholar 

  17. Mullins, L. J., 1979, Membrane Transport in Biology, Volume 2 (D. C. Tosteson. ed.). Springer-Verlag, Berlin, Heidelberg, New York, pp. 161–210.

    Google Scholar 

  18. Prince, D. A., Pedley, T. A., and Ransom, B. R., 1978, Dynamic Properties of Glia Cells, (E. Schoffeniels, G. Franck. L. Hertz, and D. B. Tower, eds.), Pergamon Press, New York, pp. 281–303.

    Google Scholar 

  19. Franck, G., Grisar, T., Moonen, G., and Schoffeniels, E., 1978, Dynamic Properties of Glia Cells (E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), Pergamon Press, New York, pp. 315–325.

    Google Scholar 

  20. Ling, G. N., 1977, Mol. Cell Biochem. 15: 159–171.

    PubMed  CAS  Google Scholar 

  21. Walker, J. L., and Brown, H. M., 1977, Physiol. Rev. 57: 729–778.

    PubMed  CAS  Google Scholar 

  22. Rasmussen, H., 1970, Science 170: 404–412.

    PubMed  CAS  Google Scholar 

  23. Rasmussen, H., and Goodman, D. B. P., 1977, Physiol. Rev. 57: 421–509.

    PubMed  CAS  Google Scholar 

  24. Rapp, P. E., and Berridge, M. J., 1977, J. Theor. Biol. 66: 497–525.

    PubMed  CAS  Google Scholar 

  25. Berridge, M. J., 1975, Advances in Cyclic Nucleotide Research, Volume 6 (P. Greengard and G. A. Robison, eds.), Raven Press, New York, pp. 1–98.

    Google Scholar 

  26. Strewler, G. J., and Orloff, J., 1977, Advances in Cyclic Nucleotide Research, Volume 8 (P. Greengard and G. A. Robison, eds.), Raven Press, New York, pp. 311–361.

    Google Scholar 

  27. Ledbetter, M. L. S., and Lubin, M., 1979, J. Cell Biol. 80: 150–165.

    PubMed  CAS  Google Scholar 

  28. Proverbio, F., and Hoffman, J. F., 1972, Fed. Proc. 31: 215–223.

    Google Scholar 

  29. Macknight, A. D. C., and Leaf, A., 1977, Physiol. Rev. 57: 510–573.

    PubMed  CAS  Google Scholar 

  30. Kregenow, F. M., 1977, Membrane Transport in Red Cells, (J. C. Ellory and V. L. Lew, eds.), Academic Press, London, New York, pp. 383–426.

    Google Scholar 

  31. Bourke, R. S., and Nelson, K. M., 1972, J. Neurochem. 19: 633–685.

    Google Scholar 

  32. Kukes, G., Elul, R., and De Vellis, J., 1976, Brain Res. 104: 71–92.

    PubMed  CAS  Google Scholar 

  33. Kimelberg, H. K., Bowman, C., Biddlecome, S., and Bourke, R. S., 1979, Brain Res. 177: 533–550.

    PubMed  CAS  Google Scholar 

  34. Lux, H. D., 1980, Antiepileptic Drugs: Mechanisms of Action (G. H. Glaser, J. K. Penry, and D. M. Woodbury, eds.), Raven Press, New York, pp. 63–83.

    Google Scholar 

  35. Somjen, G. G., 1980, Antiepileptic Drugs: Mechanisms of Action (G. H. Glaer, J. K. Penry, and D. M. Woodbury, eds.), Raven Press, New York, pp. 155–167.

    Google Scholar 

  36. Wheeler, D. D., Callihan, C. S., and Wise, W. C., 1980, J. Neurosci. Res. 5: 201–216.

    PubMed  CAS  Google Scholar 

  37. Kaplan, J. G., 1978, Annu. Rev. Physiol. 40: 19–41.

    PubMed  CAS  Google Scholar 

  38. Leffert, H. L., and Koch, K. S., 1979, Cell 18: 153–163.

    PubMed  Google Scholar 

  39. Whitfield, J. F., Boynton, A. L., Macmanus, J. P., Sikorska, M., and Tsang, B. K., 1979, Mol. Cell. Biochem. 27: 155–179.

    PubMed  CAS  Google Scholar 

  40. Freedman, M. H., 1979, Cell. lmmunol. 44: 290–313.

    CAS  Google Scholar 

  41. Hertz, L., and Schousboe, A., 1975, Int. Rev. Neurobiol. 18: 141–211.

    PubMed  CAS  Google Scholar 

  42. Oschman, J. L., 1978. Membrane Transport in Biology, Volume 3 (G. Giebisch, ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 55–93.

    Google Scholar 

  43. Ussing, H. H., and Leaf, A., 1978, Membrane Transport in Biology, Volume 3 (G. Giebisch, ed.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 1–26.

    Google Scholar 

  44. Galla, H. J., and Sackmann, E., 1975, Biochim. Biophys. Acta 401: 509–529.

    PubMed  CAS  Google Scholar 

  45. Jacobson, K., and Papahadjopoulos, D., 1975, Biochemistry 14: 152–161.

    PubMed  CAS  Google Scholar 

  46. Van Dijck, P. W. M., De Kruijff, B., Verkleij, A. J., and Van Deenen, L. L. M., 1978, Biochim. Biophys. Acta 512: 84–96.

    PubMed  Google Scholar 

  47. Kimelberg, H. K., and Papahadjopoulos, D., 1971, J. Biol. Chem. 246: 1142–1150.

    PubMed  CAS  Google Scholar 

  48. Butler, K. W., Hanson, A. W., Smith, I. C. P., and Schneider, H., 1973, Can. J. Biochem. 51: 980–989.

    PubMed  CAS  Google Scholar 

  49. Friedrich, P., Aprókovâcs, V. A., and Solti, M., 1977, FEBS Lett. 84: 183–186.

    PubMed  CAS  Google Scholar 

  50. Nicholson, C., 1980, Neurosci. Res. Prog. Bull. 18: 177–322.

    Google Scholar 

  51. Nicholson, C., 1979, The Neurosciences: Fourth Study Program (F. O. Schmitt and F. G. Worden, eds.), MIT Press Journals, Cambridge, Massachusetts, London, pp. 457–476.

    Google Scholar 

  52. Somjen, G. G., 1979, Annu. Rev. Physiol. 41: 159–177.

    PubMed  CAS  Google Scholar 

  53. Atkins, G. L., and Gardner, M. L. G., 1977, Biochim. Biophys. Acta 486: 127–145.

    Google Scholar 

  54. Winne, D., 1977, Biochim. Biophys. Acta 464: 118–126.

    PubMed  CAS  Google Scholar 

  55. Dowd, J. E., and Riggs, D. S., 1965, J. Biol. Chem. 240: 863–869.

    PubMed  CAS  Google Scholar 

  56. Endrényi, L., and Kwong, F. H. F., 1972, Analysis and Simulation of Biochemical Systems (H. C. Hemker and B. Hess, eds.), North-Holland, Amsterdam, pp. 219–237.

    Google Scholar 

  57. Fajszi, C., and Endrényi, L., 1974, FEBS Lett., 44: 240–246.

    PubMed  CAS  Google Scholar 

  58. De Miguel Merino, F., 1974, Biochem. J. 143: 93–95.

    Google Scholar 

  59. Eisenthal, R., and Cornish-Bowden, A., 1974, Biochem. J. 139: 715–720.

    PubMed  CAS  Google Scholar 

  60. Cornish-Bowden, A., and Eisenthal, R., 1974, Biochem. J. 139: 721–730.

    PubMed  CAS  Google Scholar 

  61. Cornish-Bowden, A., 1975, Biochem. J. 149: 305–312.

    PubMed  CAS  Google Scholar 

  62. Solomon, A. K., 1960, Mineral Metabolism, Volume 1 (C. L. Comar and F. Bronner, eds.), Academic Press, New York, London, pp. 119–168.

    Google Scholar 

  63. Brownell, G. L., Berman, M., and Robertson, J. S., 1968, Int. J. Appl. Radiat. Isot. 19: 249–262.

    PubMed  CAS  Google Scholar 

  64. Shipley, R. A., and Clark, R. E. (eds.), 1972, Tracer Methods for In Vivo Kinetics, Academic Press, New York, London.

    Google Scholar 

  65. Rubinow, S. I., and Winczer, A., 1971, Math. Biosci. 11: 203–247.

    Google Scholar 

  66. Lajtha, A., Latzkovits, L., and Toth, J., 1976, Biochim. Biophys. Acta 425: 511–520.

    PubMed  CAS  Google Scholar 

  67. Reiner, J. M., 1953, Arch. Biochem. Biophys. 46: 53–79.

    PubMed  CAS  Google Scholar 

  68. Fajszi, C., and Latzkovits, L., 1972, Biophysik 9: 64–69.

    PubMed  CAS  Google Scholar 

  69. Latzkovits, L., Fajszi, C., and Szentistvânyi, I., 1972, Acta Biochim. Biophys. Acad. Sci. Hung. 7: 307–314.

    CAS  Google Scholar 

  70. Latzkovits, L., Szentistvânyi, I., and Fajszi, C., 1972, Acta Biochim. Biophys. Acad. Sci. Hung. 7: 55–66.

    PubMed  CAS  Google Scholar 

  71. Latzkovits, L., Sensenbrenner, M., and Mandel, P., 1974, J. Neurochem. 23: 193–200.

    PubMed  CAS  Google Scholar 

  72. Niehaus, W. G., Jr., and Hammerstedt, R. H., 1976, Biochim. Biophys. Acta 443: 515–524.

    PubMed  CAS  Google Scholar 

  73. Ehrlich, B. E., and Diamond, J. M., 1980, J. Membr. Biol. 52: 187–200.

    PubMed  CAS  Google Scholar 

  74. Schwann, A. C., and Albers, R. W., 1979, J. Biol. Chem. 254: 4540–4544.

    Google Scholar 

  75. Krishnan, N., and Albers, R. W., 1980. J. Neurochem. 35: 753–755.

    PubMed  CAS  Google Scholar 

  76. Ellory, J. C., 1977, Membrane Transport in Red Cells (J. C. Ellory and W. L. Lew, eds.), Academic Press, London, New York, pp. 363–381.

    Google Scholar 

  77. Wiley, J. S., 1977, Membrane Transport in Red Cells, (J. C. Ellory and W. L. Lew, eds.), Academic Press, London, New York, pp. 337–361.

    Google Scholar 

  78. Siminovitch, L., 1976, Cell 7: 1–11.

    PubMed  CAS  Google Scholar 

  79. Fishman, M. C., 1979, Proc. Natl. Acad. Sci. U.S.A. 76: 4661–4663.

    PubMed  CAS  Google Scholar 

  80. Latzkovits, L., 1978, Dynamic Properties of Glia Cells (E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), Pergamon Press, New York, pp. 327–336.

    Google Scholar 

  81. Grisar, T., Franck, G., and Schoffeniels, E., 1978, Dynamic Properties of Glia Cells (E. Schoffeniels, G. Franck, L. Hertz, and D. B. Tower, eds.), Pergamon Press, New York, pp. 359–369.

    Google Scholar 

  82. Banerjee, S. P., Bosman, H. B., and Morgan, H. R., 1977, Exp. Cell Res., 104: 111–117.

    PubMed  CAS  Google Scholar 

  83. Scarpa, A., and Carafoli, E. (eds.), 1978, Annals of the New York Academy of Sciences, Volume 307, Calcium Transport and Cell Function, New York Academy of Sciences, New York.

    Google Scholar 

  84. Sulakhe, P. V., and St. Louis, P. J., 1980, Prog. Biophys. Mol. Biol., 35: 135–195.

    PubMed  CAS  Google Scholar 

  85. Hill, B., 1976, Anna. Rev. Physiol., 38: 139–152.

    Google Scholar 

  86. Colquhoun, D., 1978, Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 31–46.

    Google Scholar 

  87. Ritchie, J. M., 1978, Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 227–242.

    Google Scholar 

  88. Rash, J. E., Hudson, C. S., and Ellisman, M. H., 1978, Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolis, eds.), Raven Press, New York, pp. 47–67.

    Google Scholar 

  89. Kallai-Sanfacon, M., and Reed, J. K., 1980, J. Membr. Biol. 54: 173–181.

    PubMed  CAS  Google Scholar 

  90. Teissie, J., and Tsong, T. Y., 1980, J. Membr. Biol. 55: 133–140.

    PubMed  CAS  Google Scholar 

  91. Wenner, C., and Hackney, J., 1976, Arch. Biochem. Biophys. 176: 37–42.

    PubMed  CAS  Google Scholar 

  92. Meech, R. W., 1976, Calcium in Biological Systems (C. J. Duncan, ed.), Cambridge University Press, Cambridge, pp. 161–191.

    Google Scholar 

  93. Latzkovits, L., Rimanóczy. A., Juhâsz, A., Torday, C., and Sensenbrenner, M., 1981, Dev. Neurosci. (in press).

    Google Scholar 

  94. Wright, E. M., 1978. Membrane Transport in Biology, Volume 3 (G. Giebisch, ed.), Springer-Verlag, Berlin, Heidelberg. New York, pp. 355–377.

    Google Scholar 

  95. Llinâs, R., 1979, The Neurosciences: Fourth Study Program, (F. O. Schmitt and F. G. Worden, eds.), MIT Press. Cambridge, Massachusetts, pp. 555–571.

    Google Scholar 

  96. Lux, H. D., and Neher, E.. 1973, Exp. Brain Res. 17: 190–205.

    PubMed  CAS  Google Scholar 

  97. Varon, S. S., and Somjen. G. G., 1979. Neurosci. Res. Prog. Bull. 17: 1–239.

    CAS  Google Scholar 

  98. Nicholson, C., Phillips, J. M., and Gardner-Medwin, A. R., 1979, Brain Res. 169: 580–584.

    PubMed  CAS  Google Scholar 

  99. Kimelberg, H. K., 1974, J. Neurochem. 22: 971–976.

    PubMed  CAS  Google Scholar 

  100. Kürzinger, K., Stadtkus, C., and Hamprecht, B., 1980, Eur. J. Biochem. 103: 597–611.

    Google Scholar 

  101. Cone, C. D., and Cone, C. M., 1976, Science 192: 155–157.

    PubMed  CAS  Google Scholar 

  102. Lodin, Z., Hartman, J., Kage, M. P., Korinkovâ, P., and Booher, J., 1971 Neurobiology 1:69–85.

    Google Scholar 

  103. Nathanson, J. A., 1977 Physiol. Rev. 57:157–256.

    Google Scholar 

  104. Jenkinson, D. H., Haylett, D. G., and Koller, K., 1978, Cell Membrane Receptors for Drugs and Hormones: A Multidisciplinary Approach (R. W. Straub and L. Bolts, eds.), Raven Press, New York, pp. 89–105.

    Google Scholar 

  105. Darin de Lorenzo, A. J., Brzin, M., and Dettbarn, W. D., 1968, J. Ultrastruct. Res. 24: 367–384.

    Google Scholar 

  106. Schoffeniels, E., Franck, G.. Hertz, L., and Tower, D. B. (eds.), 1978, Dynamic Properties of Glia Cells, Pergamon Press. Oxford, New York.

    Google Scholar 

  107. Kukes, G., De Vellis, J., and Elul, R., 1976, Brain Res. 104: 93–105.

    PubMed  CAS  Google Scholar 

  108. Hertz, L., 1978, Brain Res. 145: 202–208.

    PubMed  CAS  Google Scholar 

  109. Lazarewicz, J. W., Kanje, M., Sellström, A., and Hamberger, A., 1977, J. Neurochem. 29: 495–502.

    PubMed  CAS  Google Scholar 

  110. Szentistvânyi, I., Janka, Z., Joó, F., Rimanóczy, A., Juhâsz, A., and Latzkovits, L., 1979, Neurosci. Lett. 13: 157–161.

    PubMed  Google Scholar 

  111. Szentistvânyi, I., Janka, Z., Rimanóczy, A., Latzkovits, L., and Juhâsz, A., 1979, Cell. Mol. Biol. 25: 315–321.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Latzkovits, L., Fajszi, C. (1982). Cation Transport. In: Lajtha, A. (eds) Chemical and Cellular Architecture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0614-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0614-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0616-1

  • Online ISBN: 978-1-4757-0614-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics