Skip to main content

Microelectrodes: Their Use in Microbial Ecology

  • Chapter
Book cover Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 9))

Abstract

Among the fundamental goals of microbial ecology is the development of methods that will enable the identification and counting of the important microorganisms in nature, the determination of their physical and chemical microenvironment, and the analysis of their metabolic processes and interactions. Due to the small size of the organisms, much effort has been devoted to the development of high-resolution techniques for the observation and understanding of the world of bacteria on a microscale. Scanning and transmission electron microscopy and fluorescent staining, immunofluorescence and other techniques for light microscopy have been the most successful in terms of reaching a high spatial resolution. With respect to our understanding of the microbial microenvironments and of the nature of the microorganisms that carry out the measured metabolic activities, there is still a long way to go. Most chemical and radiotracer techniques in use today operate on a centimeter or at best on a millimeter scale and in most cases their results cannot be directly related to the relevant microorganisms. One notable exception to this is the combined use of autoradiography and fluorescence microscopy on microbial communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1977, Introduction to Soil Microbiology, Wiley, New York.

    Google Scholar 

  • Aller, R. C., 1977, The Influence of Macrobenthos on Chemical Diagenesis of Marine Sediments, Ph.D. thesis, Yale University.

    Google Scholar 

  • Ammann, D., Lanter, F., Steiner, R. A., Schultess, P., Shijo, Y., and Simon, W., 1981, Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies, Anal. Chem. 53: 2267–2269.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, O. R., and Be, A. W. H., 1976, The ultrastructure of a planktonic foraminifer, Globigerinoides sacculifer (Brady), and its symbiotic dinoflagellates, J. Foram. Res. 6: 121.

    Article  Google Scholar 

  • Armstrong, W., 1967, The use of polarography in the assay of oxygen diffusing from roots in anaerobic media, Physiol. Plant. 20: 540–553.

    Article  Google Scholar 

  • Arnold, M. A., 1985, Enzyme-based fiber optic sensor, Anal. Chem. 57: 565–566.

    Article  PubMed  CAS  Google Scholar 

  • Baumgärtl, H., and D. W. Lubbers, 1983, Platinum needle electrodes for polarographic measurement of local 02 pressure in cellular range of living tissue. Its construction and properties, in: Polarographic Oxygen Sensors: Aquatic and Physiological Applications ( E. Gnaiger and H. Forstner, eds.), pp. 37–65, Springer-Verlage, Heidelberg.

    Chapter  Google Scholar 

  • Be, A. W. H., and Tolderlund, D. S., 1971, Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans, in: Micropaleontology of Oceans ( B. M. Funnell and W. R. Riedel, eds.), pp. 105–149, Cambridge University Press, Cambridge.

    Google Scholar 

  • Berner, R. A., 1962, Electrode studies of hydrogen sulfide in marine sediments, Geochim. Cosmochim. Acta 27: 563–575.

    Article  Google Scholar 

  • Berner, R. A., 1980, Early Diagenesis, a Theoretical Approach, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Board, P. A., 1976, Anaerobic regulation of atmospheric oxygen, Atmos. Environ. 10: 339–342.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau, B. P., and Guinasso, N. L., 1982, The influence of a diffusive boundary sublayer on accretion, dissolution, and diagenesis at the sea floor, in: The Dynamic Environment of the Sea Floor ( K A. Fanning and F. T. Manheim, eds.), pp. 115–145, Lexington Books, Lexington, Massachusetts.

    Google Scholar 

  • Broecker, W. S., and Peng, T.-H, 1974, Gas exchange rate between sea and air, Tellus 26: 21–35.

    Article  CAS  Google Scholar 

  • Bungay, H. R., and Chen, Y. S., 1981, Dissolved oxygen profiles in photosynthetic microbial slimes, Biotechnol. Bioeng. 23: 1893–1895.

    Article  CAS  Google Scholar 

  • Bungay, H. R., 3rd, Whalen, W. J., and Sanders, W. M., 1969, Microprobe techniques for determining diffusivities and respiration in microbial slime systems, Biotechnol. Bioeng. 11: 765–772.

    Article  Google Scholar 

  • Caflish, C. R, and Carter, N. W., 1974, A micro PCO2 electrode, Anal. Biochem. 60: 25 2257.

    Google Scholar 

  • Chen, Y. S., and Bungay, H. R., 1981, Microelectrode studies of oxygen transfer in trickling filter slimes, Biotechnol. Bioeng. 23: 781–792.

    Article  CAS  Google Scholar 

  • Clark, L. C., Wolf, R., Granger, D., and Taylor, A., 1953, Continuous recording of blood oxygen tension by polarography, J. Appl. Physiol. 6: 189–193.

    PubMed  CAS  Google Scholar 

  • Cohen, Y., 1983, The Solar Lake cyanobacterial mats: Strategies of photosynthetic life under sulfide, in: Microbial Mats: Stromatolites (Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 133–148, Alan R. Liss, New York.

    Google Scholar 

  • Cohen, Y., Padan, E., and Shilo, M., 1975a, Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica, J. Bacteriol. 123: 855–861.

    PubMed  CAS  Google Scholar 

  • Cohen, Y., Jorgensen, B. B., Padan, E, and Shilo, M., 1975b, Sulfide dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica, Nature 257: 489–492.

    Article  CAS  Google Scholar 

  • Crank, J., 1983, The Mathematics of Diffusion, Oxford University Press, London.

    Google Scholar 

  • Dale, T., 1978, Total, chemical, and biological oxygen consumption of the sediments in Lindaspollene, Western Norway, Mar. Biol. 49: 333–341.

    Article  Google Scholar 

  • Davis, R. B., 1974, Tubificids alter profiles of redox potential and pH in profundal lake sediment, Limnol. Oceanogr. 19: 342–346.

    Article  Google Scholar 

  • Drew, E. A., 1973, The biology and physiology of alga-invertebrate symbioses. III In situ measurements of photosynthesis and calcification in some hermatypic corals, J. Exp. Mar. Biol. Ecol. 13: 165–179.

    Article  CAS  Google Scholar 

  • Duursma, E. K., and Hoede, C., 1967, Theoretical, experimental and field studies concerning molecular diffusion of radioisotopes in sediments and suspended solid particles of the sea. Part A: Theories and mathematical calculations, Neth. J. Sea Res. 3: 423–457.

    Article  Google Scholar 

  • Edwards, R. W., 1958, The effect of larvae of Chironemus riparius Meigen on the redox potentials of settled activated sludge, Ann. Appl. Biol. 46: 457–464.

    CAS  Google Scholar 

  • Fenchel, T., 1969, The ecology of marine microbenthos. 4. Structure and function of the benthic ecosystem, its chemical and physical factors and the meiofauna communities with special reference to the ciliated protozoa, Ophelia 6: 1–182.

    Article  Google Scholar 

  • Fluhler, H., Ardakan, M. S., Szusckiewicz, and Stolzy, L. H., 1976, Field measured nitrous oxide concentrations, redox potentials, oxygen diffusion rates, and oxygen partial pressures in relation to denitrification, Soil Sci. 122: 107–114.

    CAS  Google Scholar 

  • Greenwood, D. J., and Goodman, D., 1967, Direct measurement of the distribution of oxygen in soil aggregates and in columns of fine soil crumbs, J. Soil. Sci. 18: 182–196.

    Article  CAS  Google Scholar 

  • Guterman, H., and Ben-Yaakov, S., 1983, Determination of total dissolved sulfide in the pH range 7.5 to 11.5 by ion selective electrodes, Anal. Chem. 55: 1731–1734.

    Article  CAS  Google Scholar 

  • Harris, G. P., 1978, Photosynthesis, productivity and growth: The physiological ecology of phytoplankton, Ergeb. Limnol. 10: 1–171.

    Google Scholar 

  • Herman, H. B., and Rechnitz, G. A., 1975, Preparation and properties of a carbonate ion-selective membrane electrode, Anal. Chim. Acta 76: 155–164.

    Article  CAS  Google Scholar 

  • Howell, J. O., and Wightman, R. M., 1984, Ultrafast voltammetry and voltammetry in highly resistive solutions with microvoltammetric electrodes, Anal. Chem. 56: 524–529.

    Article  CAS  Google Scholar 

  • Hunding, C. and Hargrave, B. T., 1973, A comparison of benthic microalgal production measured by C’4 and oxygen methods, J. Fish. Res. Board Can. 30: 309–312.

    Article  CAS  Google Scholar 

  • Jerlov, N., 1976, Optical Oceanography, Elsevier, Amsterdam.

    Google Scholar 

  • Jones, J. G., Gardener, S., and Simon, B. M., 1983, Bacterial reduction of ferric iron in stratified lake, J. Gen. Microbiol. 129: 131–139.

    CAS  Google Scholar 

  • Jorgensen, B. B., 1977, The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark), Limnol. Oceanogr. 22: 814–832.

    Article  Google Scholar 

  • Jorgensen, B. B., 1982, Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments, Phil. Trans. R. Soc. Lond. B 298: 543–561.

    Article  CAS  Google Scholar 

  • Jorgensen, B. B., 1983, The microbial sulfur cycle, in: Microbial Geochemistry ( W. E. Krumbein, ed.), pp. 91–124, Blackwell, Oxford.

    Google Scholar 

  • Jorgensen, B. B., and Revsbech, N. P., 1983, Colorless sulfur bacteria, Beggiatoa spp. And Thiovolum spp. in 02 and H2S microgradients, Appl. Environ. Microbiol. 45: 1261–1270.

    PubMed  CAS  Google Scholar 

  • Jorgensen, B. B., and Revsbech, N. P., 1985, Diffusive boundary layers and the oxygen uptake of sediments and detritus, Limnol. Oceanogr. 30: 11–21.

    Google Scholar 

  • Jorgensen, B. B., Revsbech, N. P., Blackburn, T. H., and Cohen, Y., 1979, Diurnal cycle of oxygen and sulfide microgradients and microbial photosynthesis in a cyanobacterial mat sediment, Appl. Environ. Microbiol. 38: 46–58.

    PubMed  CAS  Google Scholar 

  • Jorgensen, B. B., Revsbech, N. P., and Cohen, Y., 1983, Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities, Limnol. Oceanogr. 28: 1075–1093.

    Article  Google Scholar 

  • Jorgensen, B. B., Erez, J., Revsbech, N. P., and Cohen, Y., 1985, Symbiotic photosynthesis in planktonic foraminifera, Globigerinoides sacculifer (Brady), studied with microelectrodes, Limnol Oceanogr. 30: 1253–1267.

    Article  Google Scholar 

  • Jorgensen, B. B., Cohen, Y., and Revsbech, N. P., 1986, Transition from anoxygenic to oxygenic photosynthesis in a microcoleus chtonoplastes Cyanobacterial mat, Appl. Environ. Microbiol. 51 (2) (in press).

    Google Scholar 

  • Joshi, M. M., and Hollis, J. P., 1977, Interaction of Beggiatoa and rice plant: Detoxification of hydrogen sulfide in the rice rhizosphere, Science 195: 179–180.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, D. P., 1982, Biogeochemistry of the chemolithotrophic oxidation of inorganic sulfur, Phil. Trans. R. Soc. Lond. B 298: 499–528.

    Article  CAS  Google Scholar 

  • Lean, D. R. S., and Burnison, B. K., 1979, An evaluation of errors in the 14C method of primary production measurement, Limnol. Oceanogr. 24: 917–928.

    Article  CAS  Google Scholar 

  • Lemon, E. R., and Erickson, A. E., 1952, The measurement of oxygen diffusion in soil with a platinum microelectrode, Soil Sci. Soc. Am. Proc. 16: 160–163.

    Article  CAS  Google Scholar 

  • Lindeboom, H. J., and Sandee, A. J. J., 1984, The effect of coastal engineering projects on microgradients and mineralization reactions in sediments, Water Sci. Technol. 16: 8794.

    Google Scholar 

  • Murray, J. W., and Grundmanis, V., 1980, Oxygen consumption in pelagic marine sediments, Science 209: 1527–1530.

    Article  PubMed  CAS  Google Scholar 

  • Naylor, P. F. D., and Evans, N. T. S., 1960, An electrode for measuring absolute oxygen tension in tissues, J. Polarogr. Soc. 2: 22–24.

    Google Scholar 

  • Nelson, D. C., and Jannasch, H. W., 1983, Chemoautotrophic growth of a marine Beggiatoa in sulfide-gradient cultures, Arch. Microbiol. 136: 262–269.

    Article  CAS  Google Scholar 

  • Pamatmat, M. M., 1971, Oxygen consumption by the seabed, IV Shipboard and laboratory experiments, Limnol Oceanogr. 16: 536–550.

    Article  Google Scholar 

  • Prezelin, B. B., 1976, The role of peridinin-chlorophyll a-protein in the photosynthetic light adaptation of the marine dinoflagellate, Glenodinium sp., Planta 130: 225–233.

    Article  CAS  Google Scholar 

  • Prezelin, B. B., Ley, A. C., and Haxo, F. T., 1976, Effects of growth irradiance on the photosynthetic action spectra of the marine dinoflagellate, Glenodinium sp., Planta 130: 251–256.

    Article  CAS  Google Scholar 

  • Pucacco, L. R., and Carter, N. W., 1978, An improved PCO2 microelectrode, Anal. Biochem. 90: 427–434.

    Article  PubMed  CAS  Google Scholar 

  • Pui, C. P., Rechnitz, G. A., and Miller, R. F., 1978, Micro-size potentiometric probes for gas and substrate sensing, Anal. Chem. 50: 330–333.

    Article  CAS  Google Scholar 

  • Purcell, E. M., 1977,. Life at low Reynolds number, Am. J. Phys. 45(1):3–11.

    Google Scholar 

  • Reimers, C. E., and Smith, K. L., 1986, Reconciling measured and predicted fluxes of oxygen across the deep sea sediment-water interface, Limnol. Oceanogr.

    Google Scholar 

  • Reimers, C. E., Kaihorn, S., Emerson, S. R., and Nealson, K. H., 1984, Oxygen consumption rates in pelagic sediments from the Central Pacific: First estimates from microelectrode profiles, Geochim. Cosmochim. Acta 48:903–911

    Google Scholar 

  • Revsbech, N. P., 1983, In situ measurement of oxygen profiles of sediments by use of oxygen microelectrodes, in: Polarographic Oxygen Sensors: Aquatic and Physiological Applications (E. Gnaiger and H. Forstner, eds.), pp. 265–273, Springer, Heidelberg.

    Google Scholar 

  • Revsbech, N. P., and Jorgensen, B. B., 1983, Photosynthesis of benthic microflora measured with high spatial resolution by the oxygen microprofile method: Capabilities and limitations of the method, Limnol. Oceanogr. 28: 749–756.

    Article  Google Scholar 

  • Revsbech, N. P., and Ward, D. M., 1983, Oxygen microelectrode that is insensitive to medium chemical composition: Use in an acid microbial mat dominated by Cyanidium caldarium, Appl. Environ. Microbiol. 45: 755–759.

    PubMed  CAS  Google Scholar 

  • Revsbech, N. P., and Ward, D. M., 1984a, Microprofiles of dissolved substances and photosynthesis in microbial mats measured with microelectrodes, in: Microbial Mats: Stromatolites ( Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 171–188, Alan R. Liss, New York.

    Google Scholar 

  • Revsbech, N. P., and Ward, D. M., 1984b, Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat, Appl. Environ. Microbiol. 48: 270–275.

    PubMed  CAS  Google Scholar 

  • Revsbech, N. P., Jorgensen, B. B., and Blackburn, T. H., 1980a, Oxygen in the seabottom measured with a microelectrode, Science 207: 1355–1356.

    Article  CAS  Google Scholar 

  • Revsbech, N. P., Sorensen, J., Blackburn, T. H., and Lomholt, J. P., 1980b, Distribution of oxygen in marine sediments measured with microelectrodes, Limnol. Oceanogr. 25: 403–411.

    Article  CAS  Google Scholar 

  • Revsbech, N. P., Jorgensen, B. B., and Brix, O., 1981, Primary production of microalgae in sediments measured by oxygen microprofile, H14CO3 fixation and oxygen exchange methods, Limnol. Oceanogr. 26: 717–730.

    Article  CAS  Google Scholar 

  • Revsbech, N. P., Jorgensen, B. B., Blackburn, T. H., and Cohen, Y., 1983, Microelectrode studies of photosynthesis and 02, H2S, and pH profiles of a microbial mat, Limnol. Oceanogr. 28: 1062–1074.

    Article  Google Scholar 

  • Revsbech, N. P., Madsen, B., and Jorgensen, B. B., 1986, Oxygen production and consumption in sediments determined at high spatial resolution by computer simulation of oxygen microelectrode data, Limnol. Oceanogr. (in press).

    Google Scholar 

  • Sand-Jensen, K., Prahl, C., and Stockholm, H., 1982, Oxygen release from roots of submerged aquatic macrophytes, Oikos 38: 349–354.

    Article  Google Scholar 

  • Sand-Jensen, K., Revsbech, N. P., and Jorgensen, B. B., 1985, Microprofiles of oxygen in epiphyte communities on submerged macrophytes, Mar. Biol. 89: 55–62.

    Article  Google Scholar 

  • Santschi, P. H., Bower, P., Nyffeler, U. P., Azvedo, A., and Broecker, W. S., 1983, Estimates of the resistance of chemical transport posed by the deep-sea boundary layer, Limnol. Oceanogr. 28: 899–912.

    Article  CAS  Google Scholar 

  • Sexstone, A. J., Revsbech, N. P., Parkin, T. B., and Tiedje, J. M., 1985, Direct measurement of oxygen profiles and denitrification rates in soil aggregates, Soil Sci. Soc. Am. J. 49: 645–651.

    Article  CAS  Google Scholar 

  • Shiver, D. F., 1969, The Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York.

    Google Scholar 

  • Smith, K. L., Jr., and Baldwin, R. J., 1984, Seasonal fluctuation in deep-sea sediment community respiration: Central and eastern North Pacific, Nature 307: 624–626.

    Article  CAS  Google Scholar 

  • Smith, K. L., Jr., and Hinga, K. R., 1983, Sediment community respiration in the deep sea, in: The Sea ( G. T. Rowe, ed.), Vol. 8, pp. 331–370, Wiley, New York.

    Google Scholar 

  • Sorensen, J., 1984, A headspace technique for oxygen measurement in deep-sea sediment cores, Limnol. Oceanogr. 29: 650–652.

    Article  Google Scholar 

  • Sorensen, J., Jorgensen, B. B., and Revsbech, N. P., 1979, A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments, Microb. Ecol. 5: 105–115.

    Article  Google Scholar 

  • Stanier, R. Y., Adelberg, E. A., and Ingraham, J. L., 1977, General Microbiology, 4th ed., Macmillan, London.

    Google Scholar 

  • Steemann-Nielsen, E., 1952, Use of radioactive carbon (C14) for measuring organic production in the sea, J. Cons. Cons. Int. Explor. Mer 18: 117–140.

    Google Scholar 

  • Thomas, R. C., 1978, Ion-Sensitive Intracellular Microelectrodes, How to Make and Use Them, Academic Press, London.

    Google Scholar 

  • Tsien, R. Y., 1980, Liquid sensors for ion-selective microelectrodes. Trends Neurosci. 3: 219–221.

    Article  CAS  Google Scholar 

  • Tsuchida, T., and Yoda, K., 1981, Immobilization of D-glucose oxidase onto a hydrogen peroxide permselective membrane and application for an enzyme electrode, Enzyme Microb. Technol. 3: 326–330.

    Article  CAS  Google Scholar 

  • Vogel, S., 1981, Life in Moving Fluids, Willard Grant, Boston.

    Google Scholar 

  • Ward, D. M., Beck, E., Revsbech, N. P., Sandbeck, K. A., and Winfrey, M. R., 1984, Decomposition of hot spring microbial mats, in: Microbial Mats: Stromatolites ( Y. Cohen, R. W. Castenholz, and H. O. Halvorson, eds.), pp. 191–214, Alan R. Liss, New York.

    Google Scholar 

  • Whalen, W. J., Riley, J., and Nair, P., 1967, A microelectrode for measuring intracellular PO2, J. Appl. Physiol. 23: 798–801.

    PubMed  CAS  Google Scholar 

  • Wightman, R. M., 1981, Microvoltammetric electrodes, Anal. Chem. 53: 1125A–1130A.

    Article  CAS  Google Scholar 

  • Wimbush, M., 1976, The physics of the benthic boundary layer, in: The Benthic Boundary Layer ( I. N. McCave, ed.), pp. 3–10, Plenum Press, New York.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Revsbech, N.P., Jørgensen, B.B. (1986). Microelectrodes: Their Use in Microbial Ecology. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0611-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0611-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0613-0

  • Online ISBN: 978-1-4757-0611-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics