The Ecology of Heterotrophic Microflagellates

  • Tom Fenchel
Part of the Advances in Microbial Ecology book series (AMIE, volume 9)


The wide variety of unicellular, phagotrophic eucaryotes known collectively as heterotrophic microflagellates has recently attracted much attention particularly among biological oceanographers. Knowledge of the morphology, systematic affinities, and general biology of members of this heterogeneous assemblage of protists is still far from complete. Even so, literature spanning over more than a century gives evidence of the diversity of these forms and of their ubiquitous occurrence. Lohmann (1911, 1920) attempted to quantify these small protozoans in seawater and assess their ecological significance, and Griessmann (1914) isolated a variety of forms in culture and described aspects of their biology.


Food Particle Balance Growth Attached Bacterium Heterotrophic Flagellate Marine Plankton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aaronson, S., 1980, Descriptive biochemistry and physiology of the Chrysophyceae (with some comparisons to Prymnesiophyceae), in: Biochemistry and Physiology of Protozoa, Vol. 3 ( M. Levandowsky and S. H. Hutner, eds.), pp. 117–169, Academic Press, New York.Google Scholar
  2. Andersen, P., and Fenchel T., 1985, Bacterivory by microheterotrophic flagellates in seawater samples, Limnol. Oceanogr. 30: 198–202.CrossRefGoogle Scholar
  3. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water-column microbes in the sea, Mar. Ecol. Prog. Ser. 10: 257–263.CrossRefGoogle Scholar
  4. Bamforth, S. S., 1967, A microbial comparison of two forest soils of southeastern Louisiana, Proc. La. Acad. Sci. 30: 7–16.Google Scholar
  5. Bamforth, S. S. 1976, Rhizosphere-soil microbial comparisons in sub-tropical forests of southeastern Louisiana, Trans. Am. Microsc. Soc. 95: 613–621.CrossRefGoogle Scholar
  6. Booth, B. C., Lewin, J., and Norris, R. E., 1980, Siliceous nanoplankton. I. Newly discovered cysts from the Gulf of Alaska, Mar. Biol. 58: 205–209.CrossRefGoogle Scholar
  7. Boucaud-Camou, E., 1966, Le choanoflagellés des cotes de la Manche: I. Systematique, Bull. Soc. Linn. Normandie Ser. 10 7: 191–209.Google Scholar
  8. Bourrelly, P., 1963, Loricae and cysts in the Chrysophyceae, Ann. N. Y. Acad. Sci. 108: 421–429.PubMedCrossRefGoogle Scholar
  9. Burkill, P. H., 1982, Ciliates and other microplankton components of a nearshore food-web: Standing stocks and production processes, Ann. Inst. Oceanogr. Paris 58: 335–350.Google Scholar
  10. Calow, P., 1977, Conversion efficiencies in heterotrophic organisms, Bibl. Rev. 52: 385–409.CrossRefGoogle Scholar
  11. Caron, D. A., 1983, Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescence microscopy, and comparison with other procedures, Appl. Environ. Microbiol. 46: 491–498.PubMedGoogle Scholar
  12. Caron, D. A., Davis, P. G. Madin, L. P., and Sieburth J. McN., 1982, Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates, Science 218: 795–797.PubMedCrossRefGoogle Scholar
  13. Clarholm, M., 1981, Protozoan grazing of bacteria in soil—Impact and importance, Microb. Ecol. 7: 343–350.CrossRefGoogle Scholar
  14. Corliss, J. O., 1983, A puddle of protists, Sciences 23 (3): 35–39.Google Scholar
  15. Corliss, J. O., and Esser, S. C., 1974, Comments on the role of the cyst in the life cycle and survival of free-living protozoa, Trans. Am. Microc. Soc. 93: 578–593.CrossRefGoogle Scholar
  16. Curds, C. R., 1965, An ecological study of the ciliated protozoa in activated sludge, Oikos 15: 282–289.CrossRefGoogle Scholar
  17. Curds, C. R., and Cockburn, A., 1968, Studies on the growth and feeding of Tetrahymena pyriformis in axenic and monoxenic culture, J. Gen. Microbiol. 54: 343–358.PubMedCrossRefGoogle Scholar
  18. Curds, C. R., and Cockburn, A., 1971, Continuous monoxenic culture of Tetrahymena pyriformis, J. Gen. Microbiol. 66: 95–108.PubMedCrossRefGoogle Scholar
  19. Cutler, D. W., 1927, Soil protozoa and bacteria in relation to their environment, J. Queckett. Microsc. Club 15: 309–330.Google Scholar
  20. Cutler, D. W., and Crump, L. M., 1920, Daily periodicity in the numbers of active soil flagellates: With a brief note on the relation of trophic amoebae and bacterial numbers, Ann. Appl. Biol. 7: 11–24.CrossRefGoogle Scholar
  21. Cutler, D. W., Crump, L. M., and Sandon, H., 1922, A quantitative investigation of the bacterial and protozoan population of the soil, with an account of the protozoan fauna, Phil. Trans. R. Soc. Lond. B 211: 317–350.CrossRefGoogle Scholar
  22. Darbyshire, J. F., and Greaves, M. P., 1967, Protozoa and bacteria in the rhizosphere of Sinapis alba L., Trifolium repens L., and Lolium perenne L., Can. J. Microbiol. 13: 1057–1068.PubMedCrossRefGoogle Scholar
  23. Darbyshire, J. F., Wheatley, R. E., Greaves, M. P., and Inkson, R. H., 1974, A rapid micro-method for estimating bacterial and protozoan populations in soil, Rev. Ecol. Biol. 11: 465–475.Google Scholar
  24. Davidson, L. A., 1982, Ultrastructure, behavior, and algal flagellate affinities of the helioflaggellate Ciliophrys marina, and the classification of the helioflagellates (Protista, Actinopoda, Heliozoea), J. Protozool. 29: 19–29.Google Scholar
  25. Davis, P. G., and Sieburth, J. McN., 1982, Differentiation of phototrophic and heterotrophic nanoplankton populations in marine waters by epifluorescence microscopy, Ann. Inst. oceanogr. Paris 58: 249–260.Google Scholar
  26. Davis, P. G., Caron, D. A., and Sieburth, J. McN., 1978, Oceanic amoebae from North Atlantic: Culture, distribution and taxonomy, Trans. Am. Microsc. Soc. 96: 73–88.CrossRefGoogle Scholar
  27. Englund, P. T., 1981, Kinetoplast DNA, in: Biochemistry and Physiology of Protozoa, Vol. 4 ( M. Levandowsky and S. H. Hutner, eds.), pp. 334–383, Academic Press, New York.Google Scholar
  28. Eyden, B. P., 1977, Morphology and ultrastructure of Bodo designis Skuja 1948, Protistologica 13: 169–179.Google Scholar
  29. Fenchel, T., 1970, Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum, Limnol. Oceanogr. 15: 14–20.Google Scholar
  30. Fenchel, T., 1975, The quantitative importance of the benthic microfauna of an arctic tundra pond, Hydrobiologia 46: 445–464.CrossRefGoogle Scholar
  31. Fenchel, T., 1980a, Relation between particle size selection and clearance in suspension feeding ciliates, Limnol. Oceanogr. 25: 733–738.CrossRefGoogle Scholar
  32. Fenchel, T., 1980b, Suspension feeding in ciliated protozoa: Functional response and particle size selection, Microb. Ecol. 6: 1–11.CrossRefGoogle Scholar
  33. Fenchel, T., 1982a, Ecology of heterotrophic microflagellates. I. Some important forms and their functional morphology, Mar. Ecol. Prog. Ser. 8: 211–223.CrossRefGoogle Scholar
  34. Fenchel, T., 1982b, Ecology of heterotrophic microflagellates. II. Bioenergetics and growth, Mar. Ecol. Prog. Ser. 8: 225–231.CrossRefGoogle Scholar
  35. Fenchel, T., 1 982c, Ecology of heterotrophic microflagellates. III. Adaptations to heterogenous environments, Mar. Ecol. Prog. Ser. 9: 25–33.Google Scholar
  36. Fenchel, T., 1982d, Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as consumers of bacteria, Mar. Ecol. Prog. Ser. 9: 35–42.CrossRefGoogle Scholar
  37. Fenchel, T., 1982e, The bioenergetics of a heterotrophic microflagellate, Ann. Inst. Oceanogr. Paris 58: 55–60.Google Scholar
  38. Fenchel, T., 1984, Suspended marine bacteria as food source, in: Flow of Energy and Materials in Marine Ecosystems ( M. J. Fasham, ed.), pp. 301–314, Plenum Press, New York.CrossRefGoogle Scholar
  39. Fenchel, T., and Finlay, B. J., 1983, Respiration rates in heterotrophic, free-living Protozoa, Microb. EcoL 9: 99–122.CrossRefGoogle Scholar
  40. Fenchel, T., and Harrison, P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes ( J. M. Anderson and A. Macfayden, eds.), pp. 285–299, Blackwell, Oxford.Google Scholar
  41. Fenchel, T., and Jorgensen, B. B., 1977, Detritus food chains of aquatic ecosystems: The role of bacteria, in: Advances in Microbial Ecology, Vol. 1 ( M. Alexander, ed.), pp. 158, Plenum Press, New York.Google Scholar
  42. Finlay, B. J., Span, A., and Ochsenbein-Gattlen, C, 1983, Influence of physiological states on indices of respiration rate in protozoa, Comp. Biochem. Physiol. 74A: 211–219.CrossRefGoogle Scholar
  43. Grassé, P.-P., 1952, Traité de Zoologie, 1.1. Protozoaires, Masson, Paris.Google Scholar
  44. Grassé, P.-P., 1953, Traité de Zoologie, 1.2. Protozoaires, Masson, Paris.Google Scholar
  45. Griessmann, K., 1914, Über marine Flagellaten, Arch. Protistenkd. 32: 1–78.Google Scholar
  46. Haas, L. W., 1982, Improved epifluorescence microscopy for observing planktonic microorganisms, Ann. Inst. Oceanogr. Paris 58: 261–266.Google Scholar
  47. Haas, L. W., and Webb, K. L., 1979, Nutritional mode of several non-pigmented microflagellates from the York River Estuary, Virginia, J. Exp. Mar. Biol. Ecol. 39: 125–134.CrossRefGoogle Scholar
  48. Hänel, K., 1979, Systematik und Ökologie der farblosen Flagellaten des Abwassers, Arch. Protistenkd. 121: 73–137.CrossRefGoogle Scholar
  49. Hobbie, J. E., Daley, R. J., and Jasper, S., 1977, Use of Nucleopore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol. 33: 1225–1228.PubMedGoogle Scholar
  50. Hollande, A., 1942, Etude cytologique et biologique de quelques flagellés libres, Arch. Zool. Exp. Gen. 83: 1–268.Google Scholar
  51. Holwill, M. E. J., 1974, Hydrodynamic aspects of ciliary and flagellar movement, in: Cilia and Flagella, M. A. Sleigh; ed.), pp. 143–175, Academic Press, London.Google Scholar
  52. Jorgensen, C. B., 1975, Comparative physiology of suspension feeding, Annu. Rev. Physiol. 37: 57–79.PubMedCrossRefGoogle Scholar
  53. King, K. R., Hollibaugh, J. T., and Azam, F., 1980, Predator-prey interactions between the larvacean Oikopleura dioica and bacterioplankton in enclosed water columns, Mar. Biol. 56: 49–57.CrossRefGoogle Scholar
  54. Koch, A. L., 1971, The adaptive responses of Escherichia coli to a feast and famine existence, Adv. Microb. Physiol. 6: 147–217.PubMedCrossRefGoogle Scholar
  55. Kopylov, A. I., and Moiseev, E. V., 1980, Effect of colorless infusoria on the estimation of bacterial production in seawater, DokladyAkad. NaukSSSR 252: 503–505.Google Scholar
  56. Kopylov, A. I., Mamayeva T. I., and Batsanin, S. F., 1980, Energy balance of the colorless flagellate Parabodo attenuatus (Zoomastigophora, Protozoa), Oceanology 20: 705–708.Google Scholar
  57. Laake, M., Dahle, A. B., Eberlein, K., and Rein, K., 1983, A modelling approach to the interplay of carbohydrates, bacteria and non-pigmented flagellates in a controlled ecosystem experiment with Skeletonema costatum, Mar. Ecol. Prog. Ser. 14: 71–79.CrossRefGoogle Scholar
  58. Lackey, J. B., 1936, Occurrence and distribution of the marine protozoan species in the Woods Hole area, Biol. Bull. 70: 264–278.CrossRefGoogle Scholar
  59. Lackey, J. B., 1961, Bottom sampling and environmentâl niches, Limnol. Oceanogr. 6: 211–279.CrossRefGoogle Scholar
  60. Lackey, J. B., 1962, Three new colorless Euglenophyceae from marine situations, Arch. Microbi ol. 42: 190–195.CrossRefGoogle Scholar
  61. Lackey, J. B., 1963, The microbiology of a Long Island bay in the summer of 1961, Int. Rev. Gesamten Hydrobiol. 48: 577–601.CrossRefGoogle Scholar
  62. Landry, M. R., Haas, L. W., and Fagerness, V. L., 1984, Dynamics of microbial plankton communities: Experiments in Kaneohe Bay, Hawaii, Mar. Ecol. Prog. Ser. 16: 127–133.CrossRefGoogle Scholar
  63. Laval, M., 1971, Ultrastructure et mode de nutrition du choanoflagellé Salpingoeca pelagica sp. nov. Comparaison avec les choanocytes des spongiaries, Protistologica 7: 325–336.Google Scholar
  64. Leadbeater, B. S. C., 1972a, Fine-structural observations on some marine choanoflagellates from the coast of Norway, J. Mar. Biol. Assoc. U. K. 52: 67–79.CrossRefGoogle Scholar
  65. Leadbeater, B. S. C., 1972b, Identification, by means of electron microscopy, of flagellate nanoplankton from the coast of Norway, Sarsia 49: 107–124.Google Scholar
  66. Leadbeater, B. S. C., 1972c, Ultrastructural observations on some marine choanoflagellates from the coast of Denmark, Br. Phycol. J. 7: 195–211.CrossRefGoogle Scholar
  67. Leadbeater, B. S. C., 1972d, Paraphysomonas cyclocophora sp. nov., a marine species from the coast of Norway, Nor. J. Bot. 19: 179–185.Google Scholar
  68. Leadbeater, B. S. C., 1974, Ultrastructural observations on nanoplankton collected from the coast of Jugoslavia and the bay of Algiers, J. Mar. Biol. Assoc. U. K. 54: 179–196.CrossRefGoogle Scholar
  69. Leadbeater, B. S. C., 1977, Observations on the life-history and ultrastructure of the marine choanoflagellate Choanoeca perplexa Ellis, J. Mar. Biol. Assoc. U. K. 57: 285–301.CrossRefGoogle Scholar
  70. Leadbeater, B. S. C., 1983, Life-history and ultrastructure of a new marine species of Proterospongia (Choanoflagellida), J. Mar. Biol. Assoc. U. K. 63: 135–160.CrossRefGoogle Scholar
  71. Leadbeater, B. S. C., and Manton, I., 1974, Preliminary observations on the chemistry and biology of the lorica in a collared flagellate (Stephanoeca diplocostata Ellis), J. Mar. Biol. Assoc. U K. 54: 269–276.CrossRefGoogle Scholar
  72. Leadbeater, B. S. C., and Morton, C., 1974, A microscopical study of a marine species of Codosiga James-Clark (Choanoflagellata) with special reference to the ingestion of bacteria, Biol. J. Linn. Soc. 6: 337–347.CrossRefGoogle Scholar
  73. Levine, N. D., Corliss, J. O., Cox, F. E. G., Deroux, G., Grain, J., Honigberg, B. M., Leedale, G. F., Loeblich, A. R., III, Lom, J., Lynn, D., Merinfeld, E. G., Page, F. C., Poljansky, G., Sprague, V., Vivra, J., and Wallace, F. G., 1980, A newly revised classification of the protozoa, J. Protozool. 27: 37–58.PubMedGoogle Scholar
  74. Lighthart, B., 1969, Planktonic and benthic bacterivorous protozoa at eleven stations in Puget Sound and adjacent Pacific Ocean, J. Fish. Res. Board Can. 26: 299–304.CrossRefGoogle Scholar
  75. Lighthill, J., 1976, Flagellar hydrodynamics, SIAM Rev. 18: 161–230.CrossRefGoogle Scholar
  76. Linley, E. A. S., Newell, R. C., and Bosma, S. A., 1981, Heterotrophic utilization of mucilage released during fragmentation of kelp (Ecklonia maxima and Laminaria pallida). I. Development of microbial communities associated with the degradation of kelp mucilage, Mar. Ecol. Prog. Ser. 4: 31–41.CrossRefGoogle Scholar
  77. Lohmann, H., 1911, Über das Nannoplankton und die Zentrifugierung Kleinster Wasserproben zur Gewinnung desselben in lebendem Zustande, Int. Rev. Gesamten Hydrobiol. Hydrogr. 4: 1–38.CrossRefGoogle Scholar
  78. Lohmann, H., 1920, Die Bevölkerung des Ozeans mit Plankton, Arch. Biontol. (Ges. Naturforsch. Freunde) 4: 1–617.Google Scholar
  79. Lucas, I. A. N., 1968, A new member of the chrysophyceae bearing polymorphic scales, J. Mar. Biol. Assoc. U. K 48: 437–441.CrossRefGoogle Scholar
  80. May, R. M., 1973, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, New Jersey.Google Scholar
  81. Mignot, J. P., 1965, Etude ultrastructurale de Cyathomonas truncata From (flaggellé cryptomonadine), J. Microsc. (Paris) 4: 239–252.Google Scholar
  82. Mignot, J. P., 1974, Etude ultrastructurale des Bicoeca, protistes flagellés, Protistologica 10: 543–565.Google Scholar
  83. Moestrup, O., 1982, Flagellar structure in algae: A review, with new observations particularly on the Chrysophyceae, Phaeophyceae (Fucophyceae), Euglenophyceae, and Reckertia, Phycologia 21: 427–528.CrossRefGoogle Scholar
  84. Moestrup, O., and Thomsen, H. A., 1976, Fine structural studies on the flagellate genus Bicoeca, Protistologica 12: 101–120.Google Scholar
  85. Moiseev, E. V., 1980, The zooflagellates in the open parts of the Black Sea, in: Pelagic Ecosystem of the Black Sea ( P. P. Chirchowa, ed.), pp. 174–179, Nauka, Moscow (in Russian).Google Scholar
  86. Newell, R. C., Lucas, M. I., and Linley, E. A. S., 1981, Rate of degradation and efficiency of conversion of phytoplankton debris by marine micro-organisms, Mar. Ecol. Prog. Ser. 6: 123–136.CrossRefGoogle Scholar
  87. Page, F. C., 1976, An Illustrated Key to Soil Amoebae, Freshwater Biological Association, Scientific Publication no. 34, Ambleside, Cumbria, England.Google Scholar
  88. Parke, M., and Leadbeater, B. S. C., 1977, Check-list of British marine choanoflagellidaSecond revision, J. Mar. Biol. Assoc. U. K. 57: 1–6.CrossRefGoogle Scholar
  89. Patterson, P. J., and Fenchel, T., Insights into the evolution of heliozoa (Protozoa, Sarcodina) as provided by ultrastructural studies on a new species of flagellate from the genus Pteridomones, Biol. J. Linn. Soc. 34: 381–403.Google Scholar
  90. Pennick, N. C., and Clarke, K. J., 1972, Paraphysomonas butcheri sp. nov. a marine, colourless, scale-bearing member of the chrysophyceae, Br. Phycol. J. 7: 45–48.Google Scholar
  91. Pomeroy, L. R., and Johannes, R. E., 1968, Occurrence and respiration of ultraplankton in the upper 500 metres of the ocean, Deep-Sea Res. 15: 381–391.Google Scholar
  92. Pratt, D. M., 1959, The phytoplankton of Narragansett Bay, Limnol. Oceanogr. 4: 425–440.CrossRefGoogle Scholar
  93. Preisig, H. R., and Hibberd, D. J., 1982, Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera 1, Nord. J. Bot. 2: 397–420.Google Scholar
  94. Pringsheim, E. G., 1952, On the nutrition of Ochromonas, Q. J. Microsc. Sci. 93: 71–96.Google Scholar
  95. Robertson, M. L., Mills, A. L., and Zieman, J. C., 1982, Microbial synthesis of detritus-like particles from dissolved organic carbon released by tropical seagrasses, Mar. Ecol. Prog. Ser. 7: 279–285.CrossRefGoogle Scholar
  96. Ruinen, J., 1938, Notizen über Salzflagellaten. II. Über die Verbreitung der Salzflagellaten, Arch. Protistenkd. 90: 210–258.Google Scholar
  97. Sherr, E. B., and Sherr, B. F., 1983, A double-staining epifluorescence technique to assess frequency of dividing cells and bacteriovory in natural populations of heterotrophic microprotozoa, Appl. Environ. Microbiol. 46: 1388–1393.PubMedGoogle Scholar
  98. Sherr, B. F., Sherr, E. B., and Berman, T., 1982, Decomposition of organic detritus: A selective role for microflagellate protozoa, Limnol. Oceanogr. 27: 765–769.CrossRefGoogle Scholar
  99. Sherr, B. F., Sherr, E. B., and Berman, T., 1983, Grazing, growth and ammonium excretion rates of a heterotrophic microflagellate fed with four species of bacteria, Appl. Environ. Microbiol. 45: 1196–1201.PubMedGoogle Scholar
  100. Sherr, B. F., Sherr, E. B., and Newell, S. Y., 1984, Abundance and productivity of heterotrophic nanoplankton, J. Plankt. Res. 6: 195–203.CrossRefGoogle Scholar
  101. Sieburth, J. McN., 1979, Sea Microbes, Oxford University Press, New York.Google Scholar
  102. Sieburth, J. McN., and Davis, P. G., 1982, The role of heterotrophic nanoplankton in the grazing and nurturing of planktonic bacteria in the Sargasso and Carribean Seas, Ann. Inst. Oceanogr. Paris 58: 285–296.Google Scholar
  103. Silver, M. W., J. G. Mitchell, and Ringo, D. C., 1980, Silicious nanoplankton. II. Newly discovered cysts and abundant choanoflagellates from the Weddell Sea, Antarctica, Mar. Biol. 58: 211–217.CrossRefGoogle Scholar
  104. Skuja, H., 1939, Beitrag zur Algenflora Lettlands II, Acta Horti Bot. Univ. Latv. 11: 41–169.Google Scholar
  105. Skuja, H., 1948, Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden, Sym. Bot. Ups. 9: 1–399.Google Scholar
  106. Skuja, H., 1956, Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer, Nova Acta Reg. Soc. Sientarum Ups. Ser. 4, 16: 1–404.Google Scholar
  107. Sleigh, M. A., 1964, Flagellar movement of the sessile flagellates Actinomonas, Codonosiga, Monas and Poteriodendron, Q. J. Microsc. Sci. 105: 405–415.Google Scholar
  108. Sorokin, Y. I., 1977, The heterotrophic phase of plankton succession in the Japan Sea, Mar. Biol. 41: 107–117.CrossRefGoogle Scholar
  109. Sorokin, Y. I., 1979, Zooflagellates as a component of the community of eutrophic and oligotrophic waters in the Pacific Ocean, Oceanology 19: 316–319.Google Scholar
  110. Sorokin, Y. I., 1981, Microheterotrophic organisms in marine ecosystems, in: Analysis of Marine Ecosyststems ( A. R. Longhurst, ed.), pp. 293–342, Academic Press, New York.Google Scholar
  111. Sorokin, Y. I., and Mikheev, V. N., 1979, On characteristics of the Peruvian upwelling ecosystem, Hydrobiologica 62: 165–198.CrossRefGoogle Scholar
  112. Sorokin, Y. I., and Paveljeva, E. B., 1972, On the quantitative characteristics of the pelagic ecosystem of Dalmee Lake (Kamchatka), Hydrobiologica 40: 519–552.CrossRefGoogle Scholar
  113. Stewart, V., Lucas, M. I., and Newell, R. C., 1981, Heterotrophic utilization of particulate matter from the kelp Laminaria pallida, Mar. Ecol, Prog. Ser. 4: 337–348.CrossRefGoogle Scholar
  114. Stout, J. D., 1980, The role of protozoa in nutrient cycling and energy flow, in: Advances in Microbial Ecology, Vol. 4 ( M. Alexander, ed.), pp. 1–50, Plenum Press, New York.Google Scholar
  115. Stout, J. D., Bamforth, S. S., and Lousier, J. D., 1982, Protozoa, in: Methods of Soil Analysis, 2. Chemical and Microbiological Properties, pp. 1103–1120, Agronomy Monograph 9, American Society of Agronomy-Soil Science Society of America, Madison, Wisconsin.Google Scholar
  116. Swale, E. M. F., 1969, A study of the Nanoplankton flagellate Pedinella hexacostata Vysotskii by light and electron microscopy, Br. Phycol. J. 4: 65–86.CrossRefGoogle Scholar
  117. Swale, E. M. F., 1973, A study of the colourless flagellate Rhynchomonas nasuta (Stokes) Kent, Biol. J. Linn. Soc. 5: 255–264.CrossRefGoogle Scholar
  118. Takahashi, E., 1981, Loricate and scale-bearing protists from Lützow-Holm Bay, Antarctica, Antarct. Rec. 73: 1–22.Google Scholar
  119. Thomsen, H. A., 1973, Studies on marine choanoflagellates I. Silicified choanoflagellates of the Isefjord (Denmark), Ophelia 12: 1–26.CrossRefGoogle Scholar
  120. Thomsen, H. A., 1975, An ultrastructural survey of the chrysophycean genus Paraphysomonas under natural conditions, Br. Phycol. J. 10: 113–127.CrossRefGoogle Scholar
  121. Thomsen, H. A., 1976, Studies on marine choanoflagellates II. Fine-structural observations on some silicified choanoflagellates from the Isefjord (Denmark) including the description of two new species, Norw. J. Bot. 23: 33–51.Google Scholar
  122. Thomsen, H. A., 1978, Nanoplankton from the Gulf of Elat (Gulf of Aqaba) with particular emphasis on choanoflagellates, Isr. J. Zool. 27: 34–44.Google Scholar
  123. Thomsen, H. A., 1979, Electron microscopical observations on brackish-water nanoplank- ton from the Tvärminne area, SW coast of Finland, Acta. Bot. Fenn. 110: 11–37.Google Scholar
  124. Thomsen, H. A., 1982, Planktonic choanoflagellates from Disko Bugt, West Greenland, with a survey of the marine nanoplankton of the area, Meddl. Grenl. Biosci. 8: 3–35.Google Scholar
  125. Thomsen, H. A., and Boonruang, P., 1983a, A microscopical study of marine collared flaggellates (Choanoflagellida) from the Andaman Sea, SW Thailand: Species of Stephanacantha gen. nov., and Platypleura gen. nov., Protistologica 14: 193–214.Google Scholar
  126. Thomsen, H. A., and Boonruang, P., 1983b, Ultrastructural observations on marine choanoflagellates (Choanoflagellida, Acanthoecidae) from the coast of Thailand: Species of Apheloecion gen. nov., J. Plankt. Res. 5: 739–753.CrossRefGoogle Scholar
  127. Thomsen, H. A., and Moestrup, 0., 1983, Electron microscopical investigations on two loricate choanoflagellates (Choanoflagellida), Calotheca alata gen. et sp. nov. and Syndetophyllum pulchellum gen. et comb. nov., from Indo-Pacific localities, Proc. R. Soc. Lond. B 214: 41–52.CrossRefGoogle Scholar
  128. Thomsen, H. A., Zimmermann, B., Moestrup, O., and Kristiansen, J., 1981, Some new freshwater species of Paraphysomonas (Chrysophyceae), Nord. J. Bot. 1: 559–581.Google Scholar
  129. Throndsen, J., 1969, Flagellates of Norwegian coastal waters, Nytt Mag. Bot. (Oslo) 16: 161–216.Google Scholar
  130. Throndsen, J., 1974, Planktonic choanoflagellates from North Atlantic waters, Sarsia 56: 95–122.Google Scholar
  131. Es, F. B., and Meyer-Reil, L. A., 1982, Biomass and metabolic activity of heterotrophic marine bacteria, in: Advances in Microbial Ecology, Vol. 6 ( K. C. Marshall, ed.), pp. 111–170, Plenum press, New York.CrossRefGoogle Scholar
  132. Vickerman, K., 1976, The diversity of the kinetoplastid flagellates, in: Biology of Kinetoplastida, Vol. 1 ( W. H. R. Lumsden and D. A. Evans, eds.), pp. 1–34, Academic Press, New York.Google Scholar
  133. Williams, P. J. leB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kiel. Meeresforsch. Sonderh. 5: 1–28.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Tom Fenchel
    • 1
  1. 1.Department of Ecology and GeneticsUniversity of AarhusAarhus CDenmark

Personalised recommendations