Quantum Statistics of Stimulated Raman Scattering

  • M. G. Raymer
  • I. A. Walmsley
Conference paper


The behavior of individual light pulses generated by stimulated Raman scattering (SRS) is dominated by quantum mechanical fluctuations. In particular, the energy of such puls s in the unsaturated gain regime has been shown, both theoretically1 and experimentally2, to undergo large-scale fluctuations from pulse to pulse. Since the system contains many molecules (~1020) and scattered photons (106−1015), SRS provides an opportunity to study the effects of quantum noise in macroscopic systems. A close analogy exists between SRS and superfluorescence (SF) from a collection of inverted two-level atoms3, where fluctuations are observed in the delay times of the superfluorescent pulse4. Thus the present experiments may help clarify the mechanism of the quantum initiation of superfluorescence. Other macroscopic systems in which quantum noise is important include amplified spontaneous emission5, transient laser buildup6, and laser mode switching7.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.G. Raymer, K. Rz4zewski and J. Mostowski, Opt. Lett. 7, 71, (1982).ADSCrossRefGoogle Scholar
  2. 2.
    I.A. Walmsley and M.G. Raymer, Phys. Rev. Lett. 50, 13, 962, (1983).ADSCrossRefGoogle Scholar
  3. 3.
    F. Haake, H. King, G. Schröder, J. Haus and R. Glauber, Phys. Rev. A 20, 5, 2047 (1979);ADSCrossRefGoogle Scholar
  4. F. Haake, H. King, G. Schröder, J. Haus and R. Glauber,Phys. Rev. Lett. 45, 7, 558 (1980).ADSCrossRefGoogle Scholar
  5. 4.
    Q.H.F. Vrehen and J.J. der Weduwe, Phys. Rev. A 24, 5, 2857 (1981).ADSCrossRefGoogle Scholar
  6. 5.
    S.P. Kravis and L. Allen, Opt. Commun. 23, 289 (1977) and S.P.Google Scholar
  7. Adams and N.B. Abraham this volume, p. 233.Google Scholar
  8. 6.
    D. Meltzer and L. Mandel, hys. Rev. A 3, 5, 1763 (1971).CrossRefGoogle Scholar
  9. 7.
    P.W. Lett, W. Christian, S Singh and LT’ Mandel, Phys. Rev.Lett. 40, 1982, (1981).Google Scholar
  10. 8.
    P. Drummond and J.H. Eberl, Phys. Rev. A 25, 6, 3446 (1982).ADSCrossRefGoogle Scholar
  11. 9.
    J. Mostowski and B. Sobole ska, this volume, p. 497 and un published.Google Scholar
  12. 10.
    T. Sizer, J. Kafka, I. Dul eng, C. Gabel and G. Mourou, IEEE JQE, 19, 506 (1983).CrossRefGoogle Scholar
  13. 11.
    J. Friedman, SLAC Report 176, (1974).Google Scholar
  14. 12.
    E. Hagenlocker, R. Minck a d W. Rado, Phys. Rev. 154, 226 (1967).ADSCrossRefGoogle Scholar
  15. 13.
    M.G. Raymer and J. Mostows i, Phys. Rev. A 24, 1980 (1981).ADSCrossRefGoogle Scholar
  16. 14.
    See, for example, B. Saleh “Photoelectron Statistics,” p. 135Google Scholar
  17. (Springer 1978).
    See also K. Rzazewski, M. Lewenstein and M.G. Raymer, Opt. Comm. 43, 451 (1982).ADSCrossRefGoogle Scholar
  18. 15.
    M. Lewenstein and F. Haake (unpublished)Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • M. G. Raymer
    • 1
  • I. A. Walmsley
    • 1
  1. 1.The Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations