Photon Echoes in Krypton and Xenon Discharges

  • M. R. Woodworth
  • I. D. Abella
Conference paper


Studies of pressure broadening of spectral lines have proven to be valuable probes of atomic dynamics and interactions.1 Photon echo experiments improve upon the more traditional frequency broadening experiments by measuring the time evolution of processes whose contribution to the overall linewidth is small compared to the Doppler width.2 To our knowledge we present for the first time the results of photon echo measurements in weakly ionized plasmas of Krypton and Xenon.3 At the pressures used in these measurements (less than 2 Torr) the pressure broadened width is only a few percent of the Doppler width.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Allard and J. Kielkopf, The Effect of Neutral Non-Resonant Collisions on Atomic Spectral Lines, Rev. Mod. Phys. 54: 1103 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    T. W. Mossberg, R. Kachru, S. R. Hartmann, and A. M. Flusberg, Echoes in Gaseous Media: A Generalize Theory of Rephasing Phenomena, Phys. Rev. A 20: 1976 (1979)CrossRefGoogle Scholar
  3. 3.
    These results are also presented as part of: M. R. Woodworth, Photon Echo Studies of Collisional Relaxation in Weakly Ionized Noble Gas Mixtures, Opt. Lett. 8: 307 (1983)CrossRefGoogle Scholar
  4. 4.
    L. D. Shearer, Depolarization of Light Scattered by Aligned 23S and 23P Helium Atoms at Resonance, Phys. Rev. 166: 30 (1968)CrossRefGoogle Scholar
  5. 5.
    T. Baer and I. D. Abella, Photon Echoes in Plasmas: Collisional Relaxation in Helium on 23S - 33P, Opt. Lett. 3:170 (1978) 1 012 T. Baer, Relaxation on Photon Echoes in Weakly Ionized Noble Gas Plasmas, Phys. Rev. A, 20: 2610 (1979)Google Scholar
  6. 6.
    J.L. Delcroix, C. M. Ferreira, and A. Ricard, in: “Principles of Laser Plasmas” ed. by G. Bekefi, ( Wiley, New York, 1978 ), pg. 159Google Scholar
  7. 7.
    M. Littman and H. Metcalf, Spectrally Narrow Pulsed Dye Laser Without Beam Expander, Appl. Opt. 17: 224 (1978)Google Scholar
  8. 8.
    I. D. Abella, N. A. Kurnit, S. R. Hartmann, Photon Echoes Phys. Rev. 141: 391 (1966)CrossRefGoogle Scholar
  9. 9.
    Steven Aoki, Photon-echo Quantum Beats on the 7P3,9-6S1,, Transition in Cesium, Phys. Rev. A 20:2013 tAppendixYGoogle Scholar
  10. 10.
    T. Baer and I. D. Abella, Polarization Rotation of Photon Echoes in Cesium Vapor in a Magnetic Field, Phys. Rev. A 16: 2098 (1978)Google Scholar
  11. 11.
    P. R. Berman, Theory of Collision Effects on Atomic and Molecular Line Shapes, Appl. Phys. 6: 283 (1975)Google Scholar
  12. 12.
    J. M. Vaughan and Geoffrey Smith, Interpretation of Foreign Gas Broadening and Shift in Krypton, Phys. Rev. 166: 17 (1968)CrossRefGoogle Scholar
  13. 13.
    W. Hindmarsh and J. M. Farr, Collision Broadening of Spectral Lines by Neutral Atoms, Prou. Quant. Electron. 2: 139 (1972)Google Scholar
  14. 14.
    G. H. Copley, A Comparison of Foreign Gas Broadening and Shift in Neon and Argon Emmision Lines, J. Quant. Spectrosc. Radiat. Transf. 16: 377 (1976)ADSCrossRefGoogle Scholar
  15. 15.
    A. Bielski, W. Dokurno, J. Szudy, and J. Wolnikowski, Low Pressure Broadening and Shift of the 540.06 nm Line of Neon, Physica C 101: 113 (1980)Google Scholar
  16. 16.
    C. Y. Robert Wu and William C. Stwalley, Calculated Pressure Broadening and Shift for Alkali Metal Atoms Perturbed by Rare Gases: Two Photon S-S Transitions, Phys. Rev.A 18: 1066 (1978)CrossRefGoogle Scholar
  17. 17.
    U. Fano, private communicationGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • M. R. Woodworth
    • 1
  • I. D. Abella
    • 1
  1. 1.Dept. of Physics, The University of ChicagoRyerson Physical LaboratoryChicagoUSA

Personalised recommendations