Semiclassical Representation for Open Systems: Quantum Theory of the Laser

  • E. P. Gordov
  • G. A. Koganov
  • A. M. Khazanov
Conference paper


In conventional models of a single-mode laser[1,2] the lasing atoms are considered motionless, or their motion is taken into account by introducing a given distribution of the frequencies of the atomic transitions, i.e., a given velocities distribution function. This distribution function is the equilibrium one and does not depend on time. Therefore, the atomic motion is treated as independent of the field. However, a number of papers have appeared (see reviews [3]) which show that strong laser fields change the motion of the atoms significantly. Here the field is treated as given, and it does not depend on the properties of the atom. Thus, the two particular cases of one problem, namely the problem of the interaction of two-level atoms with the resonant field, are considered independently.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Sargent III, M.O. Scully, W.E. Lamb, Jr., Laser Physics (Addison-Wesley, Reading, Mass., 1974); H. Haken, in Handbuch der Physic, XXV/2c (Springer-Verlag, Berlin, 1970); A. P. Kazantsev, G.I. Surdutovich, in Progress in Quantum Electronics, v. VIII, part 3 (1974).Google Scholar
  2. 2.
    L.A. Lugiato, Physica A 81, 565 (1975), 82, 1 (1976); P. Mandel, Physica A 77, 174 (1974).Google Scholar
  3. 3.
    A.P. Kazantsev, Usp. Fiz. Nauk 124, 113 (1978); V.S. Letokhov, V.G. Minogin, Phys. Reports 73, (1981).Google Scholar
  4. 4.
    E.P. Gordov, S.D. Tvorogov, Physica A (to be published, 1983 ).Google Scholar
  5. 5.
    E.P. Gordov, G.A. Koganov and A.M. Khazanov, Physica A (submitted).Google Scholar
  6. 6.
    J.R. Klauder and E.C.G. Sudarshan, Fundamentals of Quantum Optics (W. Benjamin, New York Amsterdam, 1968 ).Google Scholar
  7. 7.
    R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics ( John Wiley $ Sons, New York, 1975 ).zbMATHGoogle Scholar
  8. 8.
    L.A. Pokrovsky and A.M. Khazanov, unpublished.Google Scholar
  9. 9.
    L.A. Pokrovsky and A.M. Khazanov, Teoretich. i Matematich. Fizika 50, 146 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • E. P. Gordov
    • 1
  • G. A. Koganov
    • 1
  • A. M. Khazanov
    • 1
  1. 1.Institute of Atmospheric OpticsTomskUSSR

Personalised recommendations