Measurements of Cross-Correlations in a Two-Mode Dye Laser

  • P. Lett
  • L. Mandel
Conference paper


The tendency of a homogeneously broadened two-mode laser, such as a dye ring laser, to switch spontaneously, and at random times between the two modes is now well established[1–6]. Although in the early years the phenomenon was attributed to spurious external disturbances, and can indeed be induced by such disturbances, it was later recognized that spontaneous quantum fluctuations in the laser must be expected to produce the same effect, even in the absence of any external disturbances. Since that time the switching phenomenon has been studied in a more quantitative manner[4–6]. We wish to report the first measurements of the cross-correlation between the two light intensities for a range of working points of the laser.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. W. Rigrod and T. J. Bridges, IEEE J. Quantum Electron. 1, 298 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    D. Kühlke and W. Dietel, Opt. Quant. Electron. 9, 305 (1977);ADSCrossRefGoogle Scholar
  3. D. Kühlke, S. Schröter and W. Dietel, Kvant. Elektron. (Moscow) 6, 1090 (1979)Google Scholar
  4. D. Kühlke, S. Schröter and W. Dietel, Sov. J. Quant. Electron. 9, 642 (1979).CrossRefGoogle Scholar
  5. 3.
    H. W. Schröder, L. Stein, D. Fröhlich, B. Fugger and H. Welling, Appl. Phys. 14, 377 (1977).ADSCrossRefGoogle Scholar
  6. 4.
    Rajarshi Roy and L. Mandel, Opt. Comm. 34, 133 (1980);ADSCrossRefGoogle Scholar
  7. L. Mandel, Rajarshi Roy and Surendra Singh, in Optical Bistability, eds. C. M. Bowden, M. Ciftan and H. R. Robl ( Plenum, New York, 1981 ) p. 127.CrossRefGoogle Scholar
  8. 5.
    Rajarshi Roy, R. Short, J. Durnin and L. Mandel, Phys. Rev. Lett. 45, 1486 (1980).ADSCrossRefGoogle Scholar
  9. 6.
    P. Lett, W. Christian, Surendra Singh and L. Mandel, Phys. Rev. Lett. 47, 1892 (1981).ADSCrossRefGoogle Scholar
  10. 7.
    See for example, M. Sargent III, M. O. Scully and W. E. Lamb, Jr., Laser Physics ( Addison-Wesley, Reading, Mass., 1974 ).Google Scholar
  11. 8.
    K. Kaminishi, Rajarshi Roy, R. Short and L. Mandel, Phys. Rev. A 24, 370 (1981).ADSCrossRefGoogle Scholar
  12. 9.
    A. Schenzle and H. Brand, Phys. Rev. A 20, 1628 (1979);ADSCrossRefGoogle Scholar
  13. R. Graham and A. Schenzle, Phys. Rev. A 25, 1731 (1982).ADSCrossRefMathSciNetGoogle Scholar
  14. 10.
    R. Graham, M. Höhnerbach and A. Schenzle, Phys. Rev. Lett. 48, 1396 (1982).ADSCrossRefGoogle Scholar
  15. 11.
    R. Short, L. Mandel and Rajarshi Roy, Phys. Rev. Lett. 49, 647 (1982).ADSCrossRefGoogle Scholar
  16. 12.
    A. Schenzle, this volume, p. 131.Google Scholar
  17. 13.
    S. Grossmann and P. H. Richter, Zeits. f. Physik 249, 43 (1971).ADSCrossRefGoogle Scholar
  18. 14.
    M. M-Tehrani and L. Mandel, Phys. Rev. A 17, 677 (1978).ADSCrossRefGoogle Scholar
  19. 15.
    L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).ADSCrossRefMathSciNetGoogle Scholar
  20. 16.
    J. A. Abate, H. J. Kimble and L. Mandel, Phys. Rev. A 14, 788 (1976).ADSCrossRefGoogle Scholar
  21. 17.
    See also S. N. Dixit and P. S. Sahni, Phys. Rev. Lett. 50, 1273 (1983).ADSCrossRefGoogle Scholar
  22. 18.
    A more complete treatment of the computer solution will be presented elsewhere, see R. Short, P. Lett and L. Mandel, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • P. Lett
    • 1
  • L. Mandel
    • 1
  1. 1.University of RochesterRochesterUSA

Personalised recommendations