Photon Statistics of Dye-Lasers: A Non-Marcovian Analytical Model

  • A. Schenzle
  • R. Graham
Conference paper


Since many years there exists a fundamental laser model which is capable of describing the basic statistical properties of laser light in the threshold region. The static as well as the dynamic properties predicted by this model (1,2) are in excellent agreement with the available experimental observations. In addition, in the immediate neighbourhood of the laser threshold this model can be expected to describe this bifurcation phenomenon in a universal way according to the symmetry of the problem.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Haken, in Handbuch der Physik, ed. S. Flügge (Springer, Berlin 1970), vol. 25/2cGoogle Scholar
  2. 2.
    H. Risken, in Progress in Optics, ed. by E. Wolf, ( North Holland, Amsterdam 1970 ), vol. VIII p. 239Google Scholar
  3. 3.
    K. Kaminishi, R. Roy, R. Short, and L. Mandel, Phys. Rev. A 24, 370 (1981)ADSCrossRefGoogle Scholar
  4. 4.
    A. Schenzle and H. Brand, Phys. Rev. A 20, 1628 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    R. Graham and A. Schenzle, Phys. Rev. A 25, 1731 (1982)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. Graham, M. Höhnerbach, and A. Schenzle, Phys. Rev. Lett. 48, 1396 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    R. Short, L. Mandel, and R. Roy, Phys. Rev. Lett. 49, 647 (1982)ADSCrossRefGoogle Scholar
  8. 8.
    R. Graham and A. Schenzle, Phys. Rev. A 26, 1976 (1982)ADSMathSciNetGoogle Scholar
  9. 9.
    L. Mandel, Proc. Phys. Soc. 72, 1037 (1958)Google Scholar
  10. 10.
    S. Dixit and P. Sahni, Phys. Rev. Lett. 50, 1273 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • A. Schenzle
    • 1
  • R. Graham
    • 1
  1. 1.Fachbereich PhysikUniversität EssenEssenWest Germany

Personalised recommendations