Normed Networks: Their Mathematical Theory and Applicability

  • Lutz Priese
Part of the NATO Conference Series book series (NATOCS, volume 5)


Although “Systems Thinking” has found its entry into many disciplines and “Systems Theory,” “Systems Engineering” have become firm components in science, there exists no generally accepted concept of a “System.” Several systems-notations have been proposed, oriented on mathematical disciplines such as logic and algebra, using relations, categories, etc.; however, other people— in economics, political sciences, etc.—operate with concepts of “systems” adopted from non-mathematical model-theory.


Action Unit Finite Automaton Theoretical Biology Sequential Machine Normed Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbib, M.A., “Self-reproducing automata—some implications for theoretical biology,” Towards a Theoretical Biology II, ed, C.H. Waddington, pp. 204–226, Edinburgh: University Press, 1968.Google Scholar
  2. 2.
    Arrow, K., Social Choice and Individual Values, New York, London: Wiley, 1951.Google Scholar
  3. 3.
    Codd, E.F., Cellular Automata, New York, Academic Press, 1968.Google Scholar
  4. 4.
    Cohors-Fresenborg, “E. Dynamische Labyrinthe,” Didaktik der Mathematik, Vol. 1, pp. 22–37, 1976.Google Scholar
  5. 5.
    Friedman, A.D., “Feedback in synchronous sequential switching circuits,” IEEE Transactions on Electr. Comp., Vol. EC-15, pp. 354–367, 1966.CrossRefGoogle Scholar
  6. 6.
    Hack, M.H.T., “Petri-net languages,” MIT, Computation Structure Memo 124, 1975.Google Scholar
  7. 7.
    Holt, A.W. and Commoner, F., “Events and Conditions,” Applied Data Research,” New York, 1970.Google Scholar
  8. 8.
    Keller, R.M., “Toward a theory of universal, speed-independent modules,” IEEE Transactions on Comp., Vol. C-23, pp. 21–33, 1974.CrossRefGoogle Scholar
  9. 9.
    Kleine Büning, H.,“liber Probleme bei homogener Parkettierung von ZxZ durch Mealy-Automaten bei normierter Verwendung,” Ph.D. Thesis, Münster, 1976.Google Scholar
  10. 10.
    Kleine Büning, H. and Ottmann, Th., “Kleine universelle mehrdimensionale Turingmaschinen,” Elektronische Informationsverarbeitung und Kybernetik,” to appear.Google Scholar
  11. 11.
    Kleine Büning, H. and Priese, L., “Universal arrays of Mealy-automata,” to appear.Google Scholar
  12. 12.
    Koerber, P., “Untersuchungen an sequentiellen, durch normierte Konstruktionen gewonnenen Netzwerken endlicher Automaten,” Ph.D. Thesis, Münster, 1976.Google Scholar
  13. 13.
    Koerber, P. and Ottmann, Th., “Simulation endlicher Automaten durch Ketten aus einfachen Bausteinen,” EIK, Vol. 10, pp. 133–148, 1974.Google Scholar
  14. 14.
    Kosaraju, S.R., “Limitations of Dijkstra’s semaphore primitives and Petri-nets,” ACM SIGOPS, pp. 112–126, 1973.Google Scholar
  15. 15.
    von Neumenn, J., Theory of Self-Reproducing Automata, ed. A.W. Burks, Urbana University of Illinois Press, 1966.Google Scholar
  16. 16.
    Ottmann, Th., “Eine Theorie sequentieller Netzwerke,” Ph.D. Thesis, Münster, 1971.Google Scholar
  17. 17.
    Ottmann, Th., “Über Möglichkeiten zur Simulation endlicher Automaten...,” ZMLG, Vol. 19, pp. 223–238, 1973.Google Scholar
  18. 18.
    Ottmann, Th., “Some classes of nets of finite automata,” Institut fur angew. Informatik und formale Beschreibungsverfahren, Bericht 29, Karlsruhe, 1975.Google Scholar
  19. 19.
    Ottmann, Th., “Einfache universelle mehrdimensionale Turingmaschinen,” Habilitationsschrift, Karlsruhe, 1975.Google Scholar
  20. 20.
    Petri, C.A., “Kommunikation mit Automaten. Schriften des Rheinisch-Westf,” Instituts für instrumenteile Mathematik, Univ. Bonn, Vol. 2, 1962.Google Scholar
  21. 21.
    Priese, L., “Über einfache unentscheidbare Probleme:...” Ph.D. Thesis, Münster, 1974.Google Scholar
  22. 22.
    Priese, L., “On the minimal complexity of component-machines for self-correcting networks,” Journal of Cybernetics, Vol. 5, pp. 97–118, 1975.CrossRefGoogle Scholar
  23. 23.
    Priese, L., “On a simple combinatorial structure sufficient for sublying non-trivial self-reproduction,” ibid, Vol. 6, pp. 101–137, 1976.CrossRefGoogle Scholar
  24. 24.
    Priese, L., “Reversible Automaten und einfache universelle 2-dimensionale Thue-Systems,” ZMLG, Vol. 22, pp. 353–384, 1976.Google Scholar
  25. 25.
    Priese, L., “Eine Erweiterung Normierter Netze zu asynchronen, parallelen Netzen abstrakter Automaten,” Vortrag: 5, G.I.-Jahrestagung, 1975.Google Scholar
  26. 26.
    Priese, L., “On stable organizations of Normed Networks,” to appear in the Proceedings of the third European meeting on cybernetics and systems research, Wien, 1976.Google Scholar
  27. 27.
    Priese, L., and Rödding, D., “A combinatorial approach to self-correction,” Journal of Cybernetics, Vol. 4, pp. 7–24, 1974.CrossRefGoogle Scholar
  28. 28.
    Rödding, D. Begriffe und Automaten. Vortrag: Göttingen, 1975 to appear in Kongreßbericht des XI. Deutschen Kongreß für Philosophie.Google Scholar
  29. 29.
    Rödding, D., Some logical problems connected with networks of finite automata, Vortrag: Oxford, 1975.Google Scholar
  30. 30.
    Rödding, D. and W., “Networks of finite automata,” to appear in the Proceedings of the third European meeting on cybernetics and systems research, Wien, 1976.Google Scholar
  31. 31.
    Rödding, W., “Netzwerke abstrakter Automaten als Modelle wirtschaftlicher und sozialer Systems,” Schriftenreihe der Österreichischen Studiengesellschaft für Kybernetik, 1975.Google Scholar
  32. 32.
    Rödding, W. and Nachtkamp, H., “On the aggregation of individual preferences to form a preference of a system,” To appear in Naval Research Logistic Quarterly, 1978.Google Scholar
  33. 33.
    Rozenberg, G. and Salomaa, A., “L-Systems,” Lecture Notes on Comp. Sc., Vol. 15, 1974.Google Scholar
  34. 34.
    Smith, A.R., “Simple computation universal cellular spaces,” J. Ass. Comp. Mach., Vol. 18, pp. 339–353, 1968.CrossRefGoogle Scholar
  35. 35.
    Winckelmann, M., Untersuchungen zur Theorie der endlichen Automaten und simulierender Netzwerke, Münster, 1971.Google Scholar
  36. 36.
    Yoeli, M., “Petri-nets and asynchronous control networks,” Univ. Waterloo, Faculty of Mathematics, Research Report CS-73–07, 1973.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Lutz Priese
    • 1
  1. 1.Fachgebiet Systemtheorie und SystemtechnikUniversität DortmundDortmundGermany

Personalised recommendations