Skip to main content

Part of the book series: NATO Conference Series ((SYSC,volume 5))

  • 167 Accesses

Abstract

Mobile systems may be broadly viewed as information or energy processing systems that have the capability to move within their physical environment from one position to another. Conceptually, these systems form a distinct category of dynamic systems and as such they can be methodically studied within the formal framework of the General Systems Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Svoboda, “Un Modele d’Instinct de Conservation,” In: Information Processing Machines, Collection of Papers, Vol. 7, Czechoslovak Academy of Sciences Press, Prague, pp. 147–155, 1960.

    Google Scholar 

  2. J. Raichl, “An Attempt to Simulate Some Simple Behaviors of Lowest Organisms on a Computer,” In: Information Processing Machines, Collection of Papers, Vol. 12, Czechoslovak Academy of Sciences Press, Prague, pp. 121–126, 1962.

    Google Scholar 

  3. P. Pelikan, “Development due Modele de l’Instinct de Conservation,” In: Information Processing Machines, Collection of Papers, Vol. 10, Czechoslovak Academy of Sciences Press, Prague, pp. 313–320, 1964.

    Google Scholar 

  4. N. J. Nilsson, “A Mobile Automaton: An Application of Artificial Intelligence Techniques,” In: Proc. Intl. JCAI, (eds. D. E. Walker & L. M. Norton) ACM, New York, pp. 509–520, 1969.

    Google Scholar 

  5. J. E. Doran, “Experiments with a pleasure-seeking automaton,” In: Machine Intelligence 3, (eds. Collins, N. L. & Michie, D.), Edinborough University Press, pp. 195–216, 1968.

    Google Scholar 

  6. J. Doran, “Planning and Robots,” In: Machine Intelligence 5, (eds. B. Meltzer, D. Michie & M. Swann), Edinborough Univ. Press, pp. 519–532, 1969.

    Google Scholar 

  7. J. E. Doran, “Planning and Generalisation in an Automaton/ Environment System,” In: Machine Intelligence 4, Edited by B. Meltzer, D. Michie & M. Swann, Edinborough University Press, pp. 433–453, 1969.

    Google Scholar 

  8. W. G. Walter, The Living Brain, Duckworth, New York, 1953.

    Google Scholar 

  9. A. J. Angyan, “Machine Reproducatrix,” Mechanisation of Thought Processes, No. 2, H.M.S.O., pp. 933–948, 1959.

    Google Scholar 

  10. H. Zemanek, H. Kretz and A. J. Angyan, “A Model For Neuro-physiological Functions,” In: Information Theory, ed. C. Cherry, Butterworths, 1960.

    Google Scholar 

  11. J. H. Andreae, “Stella: A Scheme for a Learning Machine,” In: Automatic and Remote Control, Butterworths, pp. 497–512, 1964.

    Google Scholar 

  12. E. C. Berkeley, Symbolic Logic and Intelligent Machines, Chapman and Hall, New York, 1959.

    Google Scholar 

  13. R. A. Wallace, “The Maze-Solving Computer,” In: Proc. ACM, pp. 119–136, 1952.

    Google Scholar 

  14. C. E. Shannon, “Presentation of a Maze-Solving Machine,” Trans. 8th Conference Josiah Macy Foundation, ed. H. V. Foerster, New York, pp. 173–192, 1951.

    Google Scholar 

  15. N. M. Amosov, A. M. Kasatkin, L. M. Kasatkina, E. M. Kussul, S. A. Talaev and V. D. Fomenko, “Intelligent Behavior Systems Based on Semantic Networks,” Kybernetes, 2, No. 4, pp. 211–216, 1973.

    Article  Google Scholar 

  16. Masanao Toda., “The Design of a Fungus-Eater: A Model of Human Behavior in an Unsophisticated Environment,” Behavioral Science, 7, pp. 164–183, 1962.

    Article  Google Scholar 

  17. L. C. Driscoll, A Choreographic Robot Vision Model, Kybernetes, 4, No. 1, pp. 21–28, 1975.

    Article  Google Scholar 

  18. J. F. Schuh-Moreno, Some Problems of Automata Construction, (A Viewpoint), Kybernetes, 4, No. 1, pp. 15–20, 1975.

    Article  Google Scholar 

  19. S. L. Coles, Categorial Bibliography of Literature in the Field of Robotics, Stanford Research Institute, Technical Note 88, February 1974.

    Google Scholar 

  20. J. F. Young, Cybernetics, ILIFFE Books Ltd., London, 1969, (Behavioural Sciences Series).

    Google Scholar 

  21. A. M. Andrew, “Why Robotics?” Kybernetes, 4, No. 1, pp. 3–8, 1975.

    Article  Google Scholar 

  22. J. F. Engelberger, “Robotics, The Last Decade and the Next Decade,” Kybernetes, 4, No. 1, pp. 9–13, 1975.

    Article  Google Scholar 

  23. G. E. Lasker, Theory of Mobile Automata, Lecture Scriptum, School of Computer Science, University of Windsor, Windsor, Ontario, Canada, 1969.

    Google Scholar 

  24. G. E. Lasker, “Theory of Mobile Automata,” In: Advances in Cybernetics and Systems, ed. J. Rose, Vol. 2, Gordon & Breach, London, pp. 897–910, 1974, (Presented at the International Congress of Cybernetics and Systems, Queen’s College, University of Oxford, Oxford, U.K., August 28th -September 1st, 1972.)

    Google Scholar 

  25. M. Blum and C. Hewitt, “Automata On a 2-Dimensional Tape,” Proceedings, 8th Annual Symposium on Switching and Automata Theory, Austin, Texas, October 1967, pp. 155–160.

    Google Scholar 

  26. D. L. Milgram, “Web Automata,” Information and Control, 29, pp. 162–184, 1975.

    Article  Google Scholar 

  27. D. Michie, “Strategy-Building With Graph Traverser,” In: Machine Intelligence 1, eds. N. L. Collins & D. Michie, Edinborough: Oliver and Boyd, pp. 137–154, 1968.

    Google Scholar 

  28. D. Michie and R. Ross, “Experiments with the Graph Adaptive Traverser,” Machine Intelligence 5, eds. B. Meltzer & D. Michie, Edinborough University Press, pp. 301–318, 1970.

    Google Scholar 

  29. J. Mylopoulos, “On the relation of graph grammars and graph Automata,” Proc. 13th SWAT, pp. 108–120, 1972.

    Google Scholar 

  30. G. A. Fisher and G. N. Raney, “On the representation of Formal Languages using Automata on Networks,” Proc. 10th SWAT, pp. 157–165, 1969.

    Google Scholar 

  31. J. D. Rutledge, “Program Schemata as Automata,” Proc. 11th SWAT, pp. 7–24, 1970.

    Google Scholar 

  32. P. Rosenstiehl, J. R. Fiksel and A. Hollinger, “Intelligent Graphs: Networks of Finite Automata Capable of Solving Graph Problems,” In: Graph Theory and Computing, edited by R. Read, Academic Press, New York, pp. 219–265, 1972.

    Google Scholar 

  33. A. N. Shah, D. L. Milgram, and A. Rosenfeld, Parallel Web Automata, University Maryland Techn. Rep. TR-231, College Park, 1971.

    Google Scholar 

  34. H. S. Shank, “Records of Turing Machines,” Math. Syst. Theory, 5, 45, 1971.

    Article  Google Scholar 

  35. W. J. Savitch, “Maze Recognizing Automata,” Proc. 4th ACM Symp. Theory on Computation, pp. 151–156, 1972.

    Google Scholar 

  36. J. von Neumann, Theory of Self-Reproducing Automata, edited and completed by A. W. Burks, University of Illinois Press, 1966.

    Google Scholar 

  37. M. Arbib, Theories of Abstract Automata, Prentice-Hall, Englewood Cliffs, N.J., 1969.

    Google Scholar 

  38. A. W. Burks (ed), Essays on Cellular Automata, Urbana, Ill., Unibersity of Illinois Press, 1970.

    Google Scholar 

  39. E. Codd, Cellular Automata, Academic Press, New York, 1968.

    Google Scholar 

  40. J. H. Holland, “On Iterative Circuit Computers Constructed of Microelectronic Components and Systems,” Proc. WJCC, San Francisco, 1960.

    Google Scholar 

  41. R. A. Laing, “Artificial Molecular Machines: A Rapproachment Between Kinematic and Tessellation Automata,” Proc. 1st Symposium on Uniformly Structured Automata and Logic, Tokio, August 1975, pp. 73–80.

    Google Scholar 

  42. J. Myhill, “The Abstract Theory of Self-Reproduction,” In: Views on General Systems Theory, ed. M. D. Mesarovic, New York, John Wiley & Sons, pp. 106–118.

    Google Scholar 

  43. Allen Newell, “On Programming a Highly Parellel Machine To Be an Intelligent Technician,” Proc. WJCC, San Francisco, pp. 267–281, 1960.

    Google Scholar 

  44. J. W. Thatcher, Universality in the von Neumann Cellular Model, University of Michigan Techn. Rept., Ann Arbor, 1965.

    Google Scholar 

  45. E. G. Wagner, “An Approach to Modular Computers, I: Spider Automata and Embedded Automata,” IBM Res. Rept. RC-1107, 1964.

    Google Scholar 

  46. G. E. Lasker, “Mathematical Modelling of Mobile Systems.” In: Progress in Cybernetics and Systems Research, Vol. 3, Advance Publications, London, 1977.

    Google Scholar 

  47. G. E. Lasker, General Theory of Mobile Systems, Technical Report: 3–77, School of Computer Science, Univeristy of Windsor, Windsor, Ontario, Canada, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lasker, G.E. (1978). Mobile Systems: Survey. In: Klir, G.J. (eds) Applied General Systems Research. NATO Conference Series, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0555-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0555-3_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0557-7

  • Online ISBN: 978-1-4757-0555-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics