Some Esomathematical Uses of Category Theory

  • Wyllis Bandler
Part of the NATO Conference Series book series (NATOCS, volume 5)


Category Theory arose as a metalanguage for mathematics, and has shown great elegance and power in that role. From this position it has made and continues to make important contributions to General Systems Methodology, as witness certain papers at this Conference.


Inverse Semigroup Category Theory Protection Structure Computational Saving Functorial Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Lorrain, Réseaux sociaux et classifications sociales. Doctoral dissertation, Harvard University, 1971.Google Scholar
  2. 2.
    F. Lorrain, Réseaux sociaux et classifications sociales: essai sur l’algèbre et la géometrie des structures sociales. Hermann, Paris, 1975.Google Scholar
  3. 3.
    F. Lorrain and H. C. White, “Structural equivalence of individuals in social networks,” Journal of Mathematical Sociology, 1, pp. 49–80, 1971.CrossRefGoogle Scholar
  4. 4.
    W. Bandler and J. H. Johnson, “On the theory of Lorrain-categories,” General Systems Depository, No. 060477, see International Journal of General Systems, Vol. 4, No. 2, January 1978.Google Scholar
  5. 5.
    C. Ehresmann, Categories et structures, Dunod, Paris, 1965.Google Scholar
  6. 6.
    M. Hasse and L. Michler, Theorie der Kategorien, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966.Google Scholar
  7. 7.
    S. Mac Lane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971.CrossRefGoogle Scholar
  8. 8.
    I. Bucur and A. Deleanu, Introduction to the Theory of Categories and Functors, John Wiley & Sons, London, 1968.Google Scholar
  9. 9.
    H. C. White, An Anatomy of Kinship: Mathematical Models for Structures of Cumulated Roles, Prentice-Hall, Englewood Cliffs, New Jersey, 1963.Google Scholar
  10. 10.
    J. P. Boyd, “The algebra of group kinship,” Journal of Mathematical Psychology, 6, pp. 139–167, 1969.CrossRefGoogle Scholar
  11. 11.
    J. P. Boyd, J. H. Haehl and L. D. Sailer, “Kinship systems and inverse semigroups,” Journal of Mathematical Sociology, 2, pp. 37–61, 1972.CrossRefGoogle Scholar
  12. 12.
    J. H. T. Harvey and P-H. Liu, “Numerical kinship notation system: mathematical model of genealogical space,” Bulletin of the Institute of Ethnology, Academia Sinica, 23, pp. 1–20, 1967.Google Scholar
  13. 13.
    P-H. Liu, “Theory of groups of permutations, matrices and kinship: a critique of mathematical approaches to prescriptive marriage systems,” Bulletin of the Institute of Ethnology, Academia Sinica, 26, pp. 29–38, 1968.Google Scholar
  14. 14.
    P-H. Liu, Murngin: A Mathematical Solution, Institute of Ethnology, Academia Sinica, Nankang, Taipei, 1970. (Monograph series B No. 2).Google Scholar
  15. 15.
    J. Linzell, “The functorial reduction of social networks (a sociological commentary on Lorrain and White’s “Structural equivalence of individuals in social networks.”).” Technical Report, Department of Sociology, University of Essex, Colchester, U.K., August 1973.Google Scholar
  16. 16.
    R. W. Conway, W. L. Maxwell and H. L. Morgan, “On the implementation of security measures in information systems,” Communications of the ACM, Vol. 15, No. 4, April 1972, pp. 211–220.CrossRefGoogle Scholar
  17. 17.
    G. S. Graham and P. J. Denning, “Protection—principles and practice,” Proceedings of Spring Joint Computer Conference, 40, 1972, AFIPS Press, New Jersey, pp. 417–429.Google Scholar
  18. 18.
    G. J. Popek, “Protection structures.” Computer, 7, June 1974, pp. 22–33.CrossRefGoogle Scholar
  19. 19.
    L. Kohout and B. R. Gaines, “The logic of protection.” Proceedings of GI ’75, 5th Annual Congress of the Gesellschaft für Informatik (October 1975, Dortmund University).Google Scholar
  20. 20.
    L. J. Kohout and B. R. Gaines, “Protection as a general systems problem,” Int. J. General Systems, 3, pp. 3–23, 1976.CrossRefGoogle Scholar
  21. 21.
    M. A. Harrison and W. L. Ruzzo, “Protection in operating systems,” Communications of the ACM, Vol. 19, No. 8, August 1976, pp. 461–471.CrossRefGoogle Scholar
  22. 22.
    L. J. Kohout, “Methodological foundations of the study of action,” Technical Report, Department of Electrical Engineering Science, University of Essex, Colchester, U.K., 1977.Google Scholar
  23. 23.
    G. J. Klir, An Approach to General Systems Theory, Van Nostrand Reinhold, New York, 1969.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Wyllis Bandler
    • 1
  1. 1.Department of MathematicsUniversity of EssexColchesterUK

Personalised recommendations