Progress in General Systems Research

  • Brian R. Gaines
Part of the NATO Conference Series book series (NATOCS, volume 5)


Reviewing progress within one’s own era and area is a danger-our game. Perhaps a gathering such as this is the last place to expect any reasonable appraisal. We are all engrossed in our own problems within our own subfields of systems studies. Progress for any part need not be progress for the whole. And against what backcloth should overall progress itself be measured?


System Theory System Approach General System Category Theory Deductive System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Wiener, I am a Mathematician, MIT Press, Cambridge, Mass., 1956.Google Scholar
  2. 2.
    W. R. Ashby, An Introduction to Cybernetics, Chapman and Hall, London, 1956.Google Scholar
  3. 3.
    W. R. Ashby, Design for a Brain, Chapman and Hall, London, 1952.Google Scholar
  4. 4.
    J. Von Neumann, Theory of Self-Reproducing Automata, (ed. A. W. Burks), University of Illinois Press, Urbana, 1966.Google Scholar
  5. 5.
    L. Von Bertalanffy, “An Outline of General System Theory,” British Journal for the Philosophy of Science, 1, 1950, 134–165.CrossRefGoogle Scholar
  6. 6.
    R. Rosen, “The Representation of Biological Systems from the Standpoint of the Theory of Categories,” Bulletin of Mathematical Biophysics, 20, 1958, 317–341.CrossRefGoogle Scholar
  7. 7.
    M. D. Mesarovic (ed), Views on General Systems Theory, John Wiley, New York, 1974.Google Scholar
  8. 8.
    L. A. Zadeh, “The Concept of State in System Theory,” in Ref. 7, 1964, 39–50.Google Scholar
  9. 9.
    R. E. Kaiman, “On the General Theory of Control Systems,” Proc. 1st IFAC Congress, Moscow, Butterworths, London, 1960.Google Scholar
  10. 10.
    M. A. Arbib, “Automata Theory and Control Theory—a Rapprochment,” Automatica, 3, 1966, 161–189.CrossRefGoogle Scholar
  11. 11.
    R. McNaughton, “The Theory of Automata, a Survey,” Advances in Computers (ed. F. L. Alt), Academic Press, New York, 2, 1961, 379–421.Google Scholar
  12. 12.
    J. E. Gibson, “From Control Engineering to Control Science,” I.E.E.E. Spectrum, 2, 1965, 69–71.CrossRefGoogle Scholar
  13. 13.
    L. A. Zadeh, “From Circuit Theory to System Theory,” Proc. IRE, 50, 1962, 856–865.CrossRefGoogle Scholar
  14. 14.
    W. R. Ashby, “The Set Theory of Mechanism and Homeostasis,” in D. J. Stewart (ed.), Automaton Theory and Learning Systems. Academic Press, London, 1967, 23–51.Google Scholar
  15. 15.
    C. L. Hull, Principles of Behavior, Appleton-Century Crofts, New York, 1943.Google Scholar
  16. 16.
    K. Lewin, A Dynamic Theory of Personality, D. K. Adams and K. F. Zener (trans), McGraw-Hill, New York, 1935.Google Scholar
  17. 17.
    B. R. Gaines and L. J. Kohout, “The Fuzzy Decade: a Bibliography of Fuzzy Systems and Closely Related Topics,” Int. Journal Man-Machine Studies, 9, 1977, 1–68.CrossRefGoogle Scholar
  18. 18.
    J. Vachek, “On the Integration of the Peripheral Elements into the System of Language,” Travaux Linguistique de Prague, 2, 1966, 23–37.Google Scholar
  19. 19.
    J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential Machines, Prentice-Hall, Englewood Cliffs, N. J. 1966.Google Scholar
  20. 20.
    M. A. Aizermann, “Fuzzy Sets, Fuzzy Proofs and some Unsolved Problems in the Theory of Automatic Control,” Special Interest Discussion Session on Fuzzy Automata and Decision Processes, 6th IFAC World Congress, Boston, Mass., U.S.A., August 1975.Google Scholar
  21. 21.
    H. R. van der Vaart, “The Role of Mathematical Models in Biological Research,” Bulletin de l’Institut de Statistique, 33rd Session, Paris, 1961, 1–30.Google Scholar
  22. 22.
    G. Birkhoff, “Mathematics and Psychology,” SIAM Review, 11, 1969, 429–469.CrossRefGoogle Scholar
  23. 23.
    G. J. Klir, Trends in General Systems Thoeory, John Wiley, New York, 1972.Google Scholar
  24. 24.
    E. G. Manes (ed), Category Theory Applied to Computation and Control, Mathematics Dept. & Dept. of Computer and Information Science, University of Massachusetts, Amherst, February 1974.Google Scholar
  25. 25.
    B. R. Gaines, “Foundations of Fuzzy Reasoning,” International Journal Man-Machine Studies, 8, 1976, 623–688.CrossRefGoogle Scholar
  26. 26.
    Proceedings of the Sixth International Symposium on Multiple-Valued Logic, Logan, Utah, 1976, I.E.E.E. 76 CH1111–4C.Google Scholar
  27. 27.
    D. P. Snyder, Modal Logic and its Application, Van Nostrand Reinhold, New York, 1971.Google Scholar
  28. 28.
    J. Dieudonne, “Recent Developments In Mathematics,” American Mathematical Monthly, 71, 1964, 239–248.CrossRefGoogle Scholar
  29. 29.
    J. A. Goguen, “Realization is Universal,” Mathematical Systems Theory, 6, 1973, 359–374.CrossRefGoogle Scholar
  30. 30.
    M. A. Arbib and E. G. Manes, “Foundations of Systems Theory: Decomposable Systems,” Automatica, 10, 1974, 285–302.CrossRefGoogle Scholar
  31. 31.
    H. Ehrig, Universal Theory of Automata, B. G. Teubner, Stuttgart, 1974.CrossRefGoogle Scholar
  32. 32.
    F. G. Varela, H. R. Maturana & R. Uribe, “Autopoiesis: The Organization of Living Systems, Its Characterization and a Model,” Bio Systems, 5, 1974, 187–196.CrossRefGoogle Scholar
  33. 33.
    J. A. Goguen, “Semantics of Computation,” in Ref. 22, 1974, 234–249.Google Scholar
  34. 34.
    T. L. Fine, Theories of Probability, Academic Press, New York, 1973.Google Scholar
  35. 35.
    B. R. Gaines, “System Identification, Approximation and Complexity,” International Journal General Systems, 3, 1977, 145–174.CrossRefGoogle Scholar
  36. 36.
    B. R. Gaines, “Stochastic Computing Systems,” in J. T. Tou (ed.) Advances in Information Systems Science, 2, 1969, 37–172.Google Scholar
  37. 37.
    W. J. Poppelbaum, “Statistical Processors,” Dept. of Computer Science, University of Illinois at Urbana-Champaign, May 1974.Google Scholar
  38. 38.
    M. V. Srinivasan & G. D. Bernard, “A Proposed Mechanism for Multiplication of Neural Signals,” Biological Cybernetics, 21, 1976, 227–236.CrossRefGoogle Scholar
  39. 39.
    G. Klir, An Approach to General Systems Theory, Van Nostrand Reinhold, New York, 1969.Google Scholar
  40. 40.
    L. A. Zadeh, “Fuzzy Sets,” Information and Control, 8, 1965, 338–353.CrossRefGoogle Scholar
  41. 41.
    A. W. Wymore, A Mathematical Theory of Systems Engineering, John Wiley, New York, 1967.Google Scholar
  42. 42.
    A. Robinson, Non-Standard Analysis, North-Holland, Amsterdam, 1966.Google Scholar
  43. 43.
    R. R. Grinker, “In Memory of Ludwig von Bertalanffy’s Contribution to Psychiatry,” Behavioral Science, 21, 1976, 207–213.CrossRefGoogle Scholar
  44. 44.
    J. Monod, Chance and Necessity, A. A. Knopf (trans), Collins, London, 1972.Google Scholar
  45. 45.
    J. Monod, “On Chance and Necessity,” in F. J. Ayala and T. Dobzhansky, Studies in the Philosophy of Biology, MacMillan, London, 1974, 357–375.Google Scholar
  46. 46.
    J. Lewis (ed), Beyond Chance and Necessity, Garnstone Press, London, 1974.Google Scholar
  47. 47.
    J. Chiari, The Necessity of Being, Paul Elek, London, 1973.Google Scholar
  48. 48.
    L. Von Bertalanffy, “Problems of General System Theory,” Human Biology, 23, 1951, 302–312.Google Scholar
  49. 49.
    P. Achinstein & S. F. Barker, The Legacy of Logical Positivism, Johns Hopkins Press, Baltimore, 1969.Google Scholar
  50. 50.
    J. Giedymin, “Antipositivism in Contemporary Philosophy of Social Science and Humanities,” British Journal Philosophy Science, 26, 1975, 275–301.CrossRefGoogle Scholar
  51. 51.
    T. W. Adorno, H. Albert, R. Dahrendorf, J. Habermas, H. Pilot, & K. R. Popper, The Positivist Dispute in German Sociology, G. Adey and D. Frisby (trans), Heinemann, London, 1976.Google Scholar
  52. 52.
    J. Habermas and N. Luhmann, Theorie der Gesellschaft oder Sozialtechnologie—was leistet die Systemforschung? Frankfurt, 1971.Google Scholar
  53. 53.
    M. Jay, The Dialectical Imagination, Heinemann, London, 1973.Google Scholar
  54. 54.
    G. Pask, Conversation, Cognition and Learning, Elsevier, Amsterdam, 1975.Google Scholar
  55. 55.
    J. Habermas, Knowledge and Human Interests, Heinemann, London, 1972.Google Scholar
  56. 56.
    R. H. Atkin, Mathematical Structure in Human Affairs, Heinemann, London, 1974.Google Scholar
  57. 57.
    B. Melville, “Notes on the Civil Applications of Mathematics,” International Journal Man-Machine Studies, 8, 1976, 501–515.CrossRefGoogle Scholar
  58. 58.
    D. Mulhall, “The Representation of Personal Relationships: an Automated System,” International Journal Man-Machine Studies, 9, 1977, to appear.Google Scholar
  59. 59.
    J. T. Fraser (ed), The Voices of Time, Allen Lane, The Penguin Press, London, 1968.Google Scholar
  60. 60.
    R. M. Gale (ed), The Philosophy of Time, MacMillan, London, 1968.Google Scholar
  61. 61.
    J. Zeman (ed), Time in Science and Philosophy, Elsevier, Amsterdam, 1971.Google Scholar
  62. 62.
    T. Gold (ed), The Nature of Time, Cornell University Press, Ithaca, New York, 1967.Google Scholar
  63. 63.
    E. Freeman and W. Sellars (eds), Basic Issues in the Philosophy of Time, Open Court, La Salle, Illinois, 1971.Google Scholar
  64. 64.
    S. Körner (ed), Observation and Interpretation in the Philosophy of Physics, Dover Publications, New York, 1957.Google Scholar
  65. 65.
    T. Bastin (ed), Quantum Theory and Beyond, Cambridge University Press, 1971.Google Scholar
  66. 66.
    M. Audi, The Interpretation of Quantum Mechanics, University of Chicago Press, 1973.Google Scholar
  67. 67.
    G. Nierlich, The Shape of Space, Cambridge University Press, 1976.Google Scholar
  68. 68.
    C. L. Chang and C. T. Lee, Symbolic Logic and Mechanical Theorem Proving, Academic Press, New York, 1973.Google Scholar
  69. 69.
    C. G. Morgan, “Methods for Automated Theorem Proving in Non-Classical Logics,” IEEE Transactions on Computers C-25, 1976, 852–862.CrossRefGoogle Scholar
  70. 70.
    P. Hajek, “On Logics of Discovery,” in J. Becvar (ed) Mathematical Foundations of Computer Science 1975, Lecture Notes in Computer Science, 32, Springer-Verlag, Berlin, 1975, 30–45.Google Scholar
  71. 71.
    P. Hajek and T. Havranek, “On Generation of Inductive Hypotheses,” 1977, to appear.Google Scholar
  72. 72.
    T. Havranek, “Statistical Quantifiers in Observational Calculi: an Application in GUHA-Methods,” Theory and Decision, 6, 1975, 313–320.CrossRefGoogle Scholar
  73. 73.
    P. Vopenka and P. Hajek, The Theory of Semisets, North-Holland, Amsterdam, 1972.Google Scholar
  74. 74.
    G. Rosenberg and A. Salomaa, L Systems, Lecture Notes in Computer Science, 15, 1974.CrossRefGoogle Scholar
  75. 75.
    G. T. Herman and G. Rosenberg, Developmental Systems and Languages, North-Holland, Amsterdam, 1975.Google Scholar
  76. 76.
    L. R. Aronson, E. Tobach, D. S. Lehrman and J. S. Rosenblatt (eds), Development and Evolution of Behavior, W. H. Freeman, San Francisco, 1970.Google Scholar
  77. 77.
    P. P. G. Bateson and P. H. Klopfer, Perspectives in Ethology 2, Plenum Press, New York, 1976.CrossRefGoogle Scholar
  78. 78.
    J. A. Fodor and J. J. Katz (eds), The Structure of Language, Prentice-Hall, New Jersey, 1964.Google Scholar
  79. 79.
    C. J. Fillmore and D. T. Langendoen, Studies in Linguistic Semantics, Holt, Rinehart and Winston, New York, 1971.Google Scholar
  80. 80.
    R. S. Jackendoff, Semantic Interpretation in Generative Grammar, MIT Press, Cambridge, Mass., 1972.Google Scholar
  81. 81.
    D. McNeill, The Acquisition of Language, Harper and Row, New York, 1970.Google Scholar
  82. 82.
    D. I. Slobin (ed), The Ontogenesis of Grammar, Academic Press, New York, 1971.Google Scholar
  83. 83.
    B. L. Derwing, Transformational Grammar as a Theory of Language Acquisition, Cambridge University Press, 1973.Google Scholar
  84. 84.
    L. J. Kohout and B. R. Gaines, “Protection as a General Systems Problem,” International Journal General Systems, 3, 1976, 3–23.CrossRefGoogle Scholar
  85. 85.
    C. J. Date, An Introduction to Database Systems, Addison-Wesley, 1976.Google Scholar
  86. 86.
    B. Sundgren, Theory of Data Bases, Petrocelli Charter, New York, 1975.Google Scholar
  87. 87.
    T. Winograd, Understanding Natural Language, Edinburgh University Press, 1972.Google Scholar
  88. 88.
    R. Schank and K. M. Colby (eds), Computer Models of Thought and Language, W. H. Freeman, San Francisco, 1973.Google Scholar
  89. 89.
    H. A. Simon and L. Siklossy (eds), Representation and Meaning, Prentice-Hall, New Jersey, 1972.Google Scholar
  90. 90.
    D. G. Bobrow and A. Collins (eds), Representation and Understanding, Academic Press, New York, 1975.Google Scholar
  91. 91.
    D. A. Norman, et al. (eds), Explorations in Cognition, W. H. Freeman, San Francisco, 1975.Google Scholar
  92. 92.
    G. J. Sussman, A Computer Model of Skill Acquisition, Elsevier, New York, 1975.Google Scholar
  93. 93.
    L. R. Harris, “Understanding Natural Language using a Variable Grammar,” International Journal Man-Machine Studies, 9, 1977, to appear.Google Scholar
  94. 94.
    G. A. Miller and P. N. Johnson-Laird, Language and Perception, Cambridge University Press, 1976.Google Scholar
  95. 95.
    J. A. Fodor, Language and Thought, Harvester Press, Sussex, U.K., 1976.Google Scholar
  96. 96.
    E. H. Shortliffe, Computer-Based Medical Consultations: MYCIN, Elsevier, New York, 1976.Google Scholar
  97. 97.
    K. Boulding, “General Systems as a Point of View,” In Ref. 7, 1964, 25–38.Google Scholar
  98. 98.
    W. Wymore, Systems Engineering Methodology for Interdisciplinary Teams, John Wiley, New York, 1976.Google Scholar
  99. 99.
    B. P. Zeigler, Theory of Modelling and Simulation, John Wiley, New York, 1976.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Brian R. Gaines
    • 1
  1. 1.Department of Electrical Engineering ScienceUniversity of EssexColchester, EssexUK

Personalised recommendations