Boiling Heat Transfer and Pressure Drop of Liquid Helium-I under Forced Circulation in a Helically Coiled Tube

  • A. de La Harpe
  • S. Lehongre
  • J. Mollard
  • C. Johannès
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 14)


Boiling heat transfer to liquid helium-I has a number of practical applications, such as the cooling of superconducting magnets, space simulators, cryotrons, cryopumping devices, and masers. Although the bath immersion technique is used extensively for the cooling of such devices, a forced circulation technique might in some cases be more effective.


Pressure Drop Boiling Heat Transfer Annular Flow Local Heat Transfer Coefficient Vapor Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. N. Lyon, in: Advances in Cryogenic Engineerings, Vol. 10, Plenum Press, New York (1965), p. 371.Google Scholar
  2. 2.
    A. Karagounis, Bull. Inst. Intern. Froid, Annexe 1965–2: 195 (1956).Google Scholar
  3. 3.
    M. D. Ruber, J. Appl. Phys., 34:481 (1963).CrossRefGoogle Scholar
  4. 4.
    T. H. Frederking, Z. Kältetechnik, 10:206 (1958).Google Scholar
  5. 5.
    R. D. Cummings, Sc. D. Dissertation, Massachusetts Institute of Technology, Cambridge, Mass. (1965).Google Scholar
  6. 6.
    A. P. Dorey, Cryogenics, 5(3):146 (1965).CrossRefGoogle Scholar
  7. 7.
    S. Lehongre, J. C. Boissin, C. Johannès, and A. de La Harpe, “Critical Nucleate Boiling of Liquid Helium in Narrow Tube and Annuli”, paper presented at 2nd Int’l Cryogenic Engineering Conference, Brighton, England (May 1968).Google Scholar
  8. 8.
    L. S. Tong, Boiling Heat Transfer and Two-Phase Plow, John Wiley and Sons, New York (1965).Google Scholar
  9. 9.
    O. Baker, Oil Gas J., 53:185 (1954).Google Scholar
  10. 10.
    P. Griffith, Developments in Heat Transfer, Edward Arnold, London (1964), p. 261.Google Scholar
  11. 11.
    E. G. Brentari, P. J. Giarratano, and R. V. Smith, NBS, Tech. Note No. 317 (1965).Google Scholar
  12. 12.
    S. W. Gouse, “Heat Transfer and Fluid Flow Inside a Horizontal Evaporator Tube”, paper presented at Int’l Inst. Froid Congress, Madrid (1967).Google Scholar
  13. 13.
    G. F. C. Rogers and Y. R. Maylew, Int. J. Beat Mass Transfer, 7:1207 (1964).CrossRefGoogle Scholar
  14. 14.
    C. E. Dengier and J. M. Addoms, Chem. Eng, Prog. Symp. Ser., 52:95 (1956).Google Scholar
  15. 15.
    V. E. Schrock and L. M. Grossman, Nuc. Sci. Eng., 12:474 (1962).Google Scholar
  16. 16.
    S. A. Guerrieri and R. D. Talty, Chem. Eng. Progr. Symp. Ser., 18:69 (1956).Google Scholar
  17. 17.
    R. M. Wright, UCRL-2744 (Aug. 1961).Google Scholar
  18. 18.
    E. J. Davis and M. M. David, Can. J. Chem. Eng., 39:99 (1961).CrossRefGoogle Scholar
  19. 19.
    R. C. Hendricks, NASA Tech. Note D-765 (1961).Google Scholar
  20. 20.
    P. Perroud and J. Rebiere, CEA Rept. 2796 (July 1965).Google Scholar
  21. 21.
    H. Ito, Trans. ASME, D81:123 (1959).Google Scholar
  22. 22.
    R. C. Martineili and D. B. Nelson, Trans, ASME, 70:695 (1948).Google Scholar
  23. 23.
    S. Levy, Trans. ASME, J. Heat Transfer Ser. C, 82:113. (1960).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • A. de La Harpe
    • 1
  • S. Lehongre
    • 1
  • J. Mollard
    • 1
  • C. Johannès
    • 1
  1. 1.L’Air LiquideSassenageFrance

Personalised recommendations