Flux-Flow Studies and Stability Criteria of Nb-Ti Strips

  • M. S. Lubell
  • D. M. Kroeger
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 14)


One of the aims in the development of stabilized superconductors was the construction of magnets with performance predictable from measurements on short samples. It was believed that when the critical current was exceeded, the stabilized superconductors entered the current sharing regime or flux-flow state which was terminated only when the power dissipation exceeded the maximum heat flux in nucleate boilings q ̇ n . Because q ̇ n is. geometry dependent [1], environment dependent [2], sensitive to surface conditions [3], and difficult to measure accurately [4], a range of reported values for commercial material was not unduly alarming. However, recent careful measurements with controlled heat transfer conditions have revealed that the stability conditions, even for large copper-to-superconducting ratios, are quite complicated and a knowledge of q ̇ n is not always sufficient to explain the take-off or sudden transition from flux flow to complete normality [5].


Power Dissipation Normal Zone Flux Flow Linear Temperature Dependence Maximum Heat Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. N. Lyon, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 371.Google Scholar
  2. 2.
    M. N. Wilson, in: Liquid Helium Technology, Bull. Intern. Inst Froid, Annexe 1966–5, p. 109.Google Scholar
  3. 3.
    R. D. Cummings and J. L. Smith, in: Liquid Helium Technology, Bull. Intern. Inst. Froid. Annexe 1966–5, p. 85.Google Scholar
  4. 4.
    E. G. Brentari and R. V. Smith, in: Advances in Cryogenic Engineering Vol. 10, Plenum Press, New York (1965), p. 325.Google Scholar
  5. 5.
    W. F. Gauster and J. B. Hendricks, J. Appl. Phys., 39:2572 (1968); also,CrossRefGoogle Scholar
  6. 5a.
    W. F. Gauster and J. B. Hendricks, IEEE Trans. Mag., 4:489 (1968).CrossRefGoogle Scholar
  7. 6.
    P. F. Chester, Rept. on Prog. in Phys., 30, Part II:561 (1967).CrossRefGoogle Scholar
  8. 7.
    T. G. Berlincourt, Rev. Mod. Phys., 36:19 (1964);CrossRefGoogle Scholar
  9. 7a.
    K Maki, Phys., 1: 21 (1964);Google Scholar
  10. 7b.
    K Maki, Phys., 1:27 (1964).Google Scholar
  11. 8.
    P. C. Eastman and W. R. Datars, Cryogenics, 3:40 (1963).CrossRefGoogle Scholar
  12. 9.
    A. P. Dory, Cryogenics, 5:146 (1965).CrossRefGoogle Scholar
  13. 10.
    P. J. Berenson, Trans. ASME J. Heat Transfer, 83:351 (1961).CrossRefGoogle Scholar
  14. 11.
    V. J. Johnson, ed. “A Compendium of the Properties of Materials at Low Temperatures, Part I”, WADD-TR 60–56 (July, 1960).Google Scholar
  15. 12.
    K. R. Efferson and W. F. Gauster, ORNTL-TM-2233 (May, 1968), p. 12.Google Scholar
  16. 13.
    D. M. Kroeger and M. S. Lubell, Appl. Phys. Letters, 13:63 (1968).CrossRefGoogle Scholar
  17. 14.
    A. R. Strnad, C. F. Hempstead, and Y. B. Kim, Phys. Rev. Letters 13:794 (1964);CrossRefGoogle Scholar
  18. 14a.
    Y.B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev., 139:A1163 (1965).CrossRefGoogle Scholar
  19. 15.
    C. J. Axt and W. C. H. Joiner, Phys. Rev., 171:461 (1968).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • M. S. Lubell
    • 1
  • D. M. Kroeger
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations