Skip to main content

Air Core Cryogenic Magnet Coils for Fusion Research and High-Energy Nuclear Physics Applications

  • Conference paper
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 5))

  • 548 Accesses

Abstract

In the fields of controlled fusion research and high-energy nuclear physics it is becoming evident that means for the efficient generation of very high magnetic fields must be sought. Since ferromagnetic materials are of no help at the required fields of 105 gauss, one can only rely on the use of air core coils, so that the fields which can be reached depend only on the ampere-turns achievable and simple geometrical factors. In this case the limitations on attainable fields usually come down to a question of available electrical power, or, more fundamentally, to limitations imposed by heating of the coil conductors and problems of heat transfer within the coil. For laboratory — sized magnets, the limit is reached in magnets such as the Bitter magnet, where the ultimate limit is nearly reached in power density and heat transfer while achieving steady fields of 105 gauss in volumes of the order of 1 liter.

Work done under the auspices of the U.S. Atomic Energy Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Olsen, Helvetica Phys. Acta, Vol. 26, p. 798 (1953).

    Google Scholar 

  2. H. Furth and R. W. Wanlek, Rev. Sci, Inst., Vol. 27, p. 195 (1956).

    Article  Google Scholar 

  3. H. Laquer and E. F. Hammel, Rev, Sci. Inst., Vol. 28, p. 875 (1957).

    Article  Google Scholar 

  4. D.R. Wells, Project Matterhorn Technical Memo-NYO-6375 (September, 1956).

    Google Scholar 

  5. R. F. Post, UCRL-4231 (1954).

    Google Scholar 

  6. R. F. Post, Phys. Rev., Vol. 69, p. 126 (1946).

    Article  Google Scholar 

  7. D. K. C. MacDonald, Handbuch der Physik, Vol. 14.

    Google Scholar 

  8. D. K. C.. MacDonald, Proc. Roy. Soc. A202, p. 103 (1950).

    Google Scholar 

  9. F. Bitter, Rev. Sci. Inst, Vol.7, p. 379 (1936);

    Google Scholar 

  10. F. Bitter, Rev. Sci. Inst,Vol. 8, p. 318 (1937); and

    Article  Google Scholar 

  11. F. Bitter, Rev. Sci. Inst,Vol. 10, p. 373 (1939).

    Article  Google Scholar 

  12. D. K. C. MacDonald, Proc. Roy. Soc. 221, p. 534 (1954).

    Article  Google Scholar 

  13. A. N. Gennetsen, Handbuch der Physik, Vol. 14, p. 210.

    Google Scholar 

  14. D. K. C. MacDonald and K. Mendelssohn, “The resistivity of Na at low temperatures,” Proc. Roy. Soc. A202, p. 103 (1950).

    Google Scholar 

  15. G. W. Horsley, “The purification of sodium by vacuum distillation,” AERE, Report M/R, p. 1152 (1953).

    Google Scholar 

  16. D. K. C. MacDonald, G. K. White, and S.B. Woods, Proc. Roy. Soc. A235, p. 358 (1956).

    Google Scholar 

  17. R. J. Corruccini, Chem. Eng. Prog., Vol. 53, pp.262,342, and 397 (1957).

    Google Scholar 

  18. D. Gugan and J. S. Dugdale, Canadian Journal of Physics, Vol. 36, 1248 (1958).

    Article  Google Scholar 

  19. R. G. Chambers, Proc. Roy. Soc. A238, p. 344 (1956).

    Google Scholar 

  20. S. C.. Olsen and L. Rinderer, Nature, Vol. 173, p. 682 (1954).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1960 Springer Science+Business Media New York

About this paper

Cite this paper

Post, R.F., Taylor, C.E. (1960). Air Core Cryogenic Magnet Coils for Fusion Research and High-Energy Nuclear Physics Applications. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0537-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0537-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0539-3

  • Online ISBN: 978-1-4757-0537-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics