A Comparison of Methods of Predicting Equilibrium Gas Phase Compositions in Pressurized Binary Systems Containing an Essentially Pure Condensed Phase

  • B. S. Kirk
  • W. T. Ziegler
  • J. C. Mullins
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 6)


The design of purification processes involving the removal of impurities by condensation from pressurized gas streams requires phase equilibrium data which are often not available. The objective of this paper is to examine several methods of predicting the composition of a gas phase in equilibrium with an essentially pure condensed phase when only the properties of the pure components are known and to compare these predictions with the limited experimental data for the system hydrogen-methane at low temperatures.


Enhancement Factor Virial Coefficient Acentric Factor Mixture Rule Condensed Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Seattle, Chem, Reviews, Vol. 44, 141 (1949).CrossRefGoogle Scholar
  2. 2.
    H.S. Taylor and S. Glasstone, Treatise on Physical Chemistry, Vol. II, D. Van Nostrand Co., Inc., New York (1951), Chap. II.Google Scholar
  3. 3.
    Z. Dokoupil, G. van Soest, and M. D. P. Swenker, Appl. Sci. Research, Vol. A5, 182 (1955), leiden Commun, No. 397.Google Scholar
  4. 4.
    K. S. Pitzer et al, J. Am. Chem. Soc, Vol. 77, 3433 (1955).CrossRefGoogle Scholar
  5. 5.
    S. Robin, J. phys, radium, Vol. 14, 330 (1953).CrossRefGoogle Scholar
  6. 6.
    H. Ewald, Trans. Faraday Soc., Vol. 51, 347 (1955).CrossRefGoogle Scholar
  7. 7.
    A. H. Ewsld, W. B. Jepson, and J. S. Rowlinson, Faraday Soc, Discussions, Vol. 15, 238 (1953).CrossRefGoogle Scholar
  8. 8.
    J. Reuss and J. J.M. Beenakker, Physics, Vol. 22, 869 (1956), Leiden Commun. Suppl. No. 110e.Google Scholar
  9. 9.
    I. Prigogine, Advances in Chemical Physics, Vol, 11, Interscience Publishers, New York (1959).Google Scholar
  10. 10.
    M. Benedict, G. B. Webb, and L. C. Rubin, Chem. Eng. Prog., Vol. 47, 419 (1951).Google Scholar
  11. 11.
    J.M. Prausnitz, A.I.Ch.E. Journal, Vol. 5, 3 (1959).Google Scholar
  12. 12.
    Hydrocarbon Research, Inc., Pinal Report to the U.S. A. E.G., “Low Temperature Heavy Water Plant,” Contract No. AT(30–1)810, NYO-889 (March 15, 1951), pp. 90–104.Google Scholar
  13. 13.
    K.S. Piser and R. F. Curl jr., J. Am. Chem, Soc., Vol. 79, 2369 (1957).CrossRefGoogle Scholar
  14. 14.
    J. M. Prausnitz and R. D. Gunn, A. I. Ch. E. Journal, Vol. 4, 430 (1958).CrossRefGoogle Scholar
  15. 15.
    R.D. Gunn, “Volumeteric Properties of Non-polar Gaseous Mixtures” M.S. Thesis, Univ. of California (1958).Google Scholar
  16. 16.
    J. O. Birschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiely and Sons, Inc., New York (1954).Google Scholar
  17. 17.
    P.G. Keys, R.S. Taylor, and L.B. Smith, J. Math, Physics, (M.I.T.), Vol, 1. 211 (1927.Google Scholar
  18. 18.
    V. Mathot, L.A.K. Stanley, J. A. Young, and N.G. Parsonage, Trans. Faraday Soc., Vol. 52, 1488 (1956).CrossRefGoogle Scholar
  19. 19.
    P.A. Freeth and T.T.H. Verschoyle, Proc, Roy. Soc. (London), Vol. A130, 453 (1931).Google Scholar
  20. 20.
    K. Clusius and K. Wiegand, Z. physik. Chem., Vol. B46, 1 (1940).Google Scholar
  21. 21.
    W. Heuse, Z. physik. Chem., Vol. A147, 282 (1930).Google Scholar
  22. 22.
    H.H. Mooy, Leiden Comm. No. 213d (1931).Google Scholar
  23. 23.
    A. Schallamach, Proc. Roy. Soc. (London), Vol. A171. 569 (1939).Google Scholar
  24. 24.
    G.T. Armstrong, F.G. Brickwedde, and R.B. Scott, J. Re search Nat. Bur. Standards. Vol, 55, 39 (1955).CrossRefGoogle Scholar
  25. 25.
    C. S. Mattfaewi and C. O. Hard, Trans. Am. Inst. Chem. Engrs., Vol. 42, 55 (1946).Google Scholar
  26. 26.
    J. A. Beattie and O. C. Bridgeman. Proc. Am. Acad. Arts and Scl., Vol. 63, 229 (1928).CrossRefGoogle Scholar
  27. 27.
    M. Benedict, G.B. Webb, and L.C. Rubin, J. Chem, Phys., Vol. 8, 334 (1940).CrossRefGoogle Scholar
  28. 28.
    H. H. Stotier and M. Benedict, Chem, Engr. Prog. Symposium Ser., Vol. 49, No. 6, 25 (1958).Google Scholar
  29. 29.
    D. White and H. L. Johnston, Technical Report No, 26 on Liquid Hydrogen as an Aircraft Fuel, Contract W33–038-ac-14794, 30 Nov. 58, declassified 16 May 54, 69p. TR-264–26, AP-27622, Cf. U.S. Gov, Research Reports, Vol. 32, 128 (1959).Google Scholar
  30. 30.
    V.G. Fastovskii and M.G. Gonikberg, J. Phys. Chem, (U.S.S.R.), Vol, 14, 427 (1940).Google Scholar
  31. 31.
    V.G. Fastovskii and M.G. Gonikberg, Acta Physicochem. (U.S.S.R.), Vol. 12, 485 (1940).Google Scholar
  32. 32.
    F.A. Shtettel and N.M. Tsin, J. Chem. Ind. (U.S.S.R.), Vol. 16, No. 8, 24 (1939).Google Scholar
  33. 33.
    A. I. Benham and D. L. Katz, A. I. Ch. E. Journal, Vol. 3, 33 (1957).CrossRefGoogle Scholar
  34. 34.
    L.A. Wenzel, Chem. Eng. Prog., Vol. 53, 272 (1957).Google Scholar
  35. 35.
    R.H. Ewell, J.M. Harrison, and L. Berg, Ind. Eng, Chem., Vol. 36, 871 (1944).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1961

Authors and Affiliations

  • B. S. Kirk
    • 1
  • W. T. Ziegler
    • 1
  • J. C. Mullins
    • 1
  1. 1.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations