Tensile Cryostat for the Temperature Range 4° to 300°K

  • R. M. McClintock
  • K. A. Warren
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 6)

Abstract

Interest in tensile studies on solids at very low temperatures has increased in recent years for many reasons. Basic studies of this kind, in conjunction with other auxiliary methods of investigation, are extremely illuminating in the progress toward a complete theory of the flow and fracture of metals. At low temperatures, thermally activated processes can be controlled so that other, less energetic effects can be observed. Repeated, discontinuous yielding of metals, for example, has been reported at 4.2°K by Wessel [1], by Blewitt et al. [2], and by Hull and Rosenberg [3] in metals not previously suspected of having a yield point. Also, in order to study the full effect of irradiation on the mechanical properties of metals, tensile experiments must be carried out at low temperatures since some radiation effects anneal out at temperatures considerably below room temperature. Although work of this nature has not yet been reported in the literature. the low temperatures at which radiation damage anneals are well established (see, for example, Reference [4]).

Keywords

Tensile Specimen Liquid Helium Thermal Performance Epoxy Resin Adhesive Liquid Hydrogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.T. Wessel, Trans. Am. Soc. Met., Vol. 49, 149 (1957).Google Scholar
  2. 2.
    T. H. Blewitt, R. R. Coltman, and J. K. Redman, J. Appl. Phys., Vol. 23, 651 (1957).CrossRefGoogle Scholar
  3. 3.
    D. Hull and H. M. Rosenberg, Phil. Mag., Vol. 4, 303 (1959).CrossRefGoogle Scholar
  4. 4.
    H. Brooks, J. Appl. Phys., Vol. 30, 1118 (1959),CrossRefGoogle Scholar
  5. 4a.
    H. Brooks, J. Appl. Phys., Vol. 30, 1118 (1959).CrossRefGoogle Scholar
  6. 5.
    H. B. Huntington, in Solid State Physics, Vol. 7, F. Seitz and D. Turnbull (ed.), Academic Press, Inc., New York (1958).Google Scholar
  7. 6.
    E.T. Wessel, A.S.T.M. Bull. No. 211, 40 (1956).Google Scholar
  8. 7.
    H.M. Rosenberg, Progress in Cryogenics, Vol. I. K. Mendelssohn (ed.), Academic Press, Inc., New York (1959).Google Scholar
  9. 8.
    N.P. Allen, B. E. Hopkins, and J.E. McLennan, Proc. Roy. Soc. A., Vol. 234, 221 (1956).CrossRefGoogle Scholar
  10. 9.
    A.S. Eldin and S.C. Collins, J. Appl. Phys., Vol. 22, 1296 (1951).CrossRefGoogle Scholar
  11. 10.
    Z.S. Basinski, Proc. Roy. Soc. A. Vol. 240, 229 (1957).CrossRefGoogle Scholar
  12. 11.
    R.H. Kropschot, J.E. Schrodt, M.M. Fulk, and B.J. Hunter, Advances in Cryogenic Engineering, Vol. 5, K. D. Timmerhaus (ed.). Plenum Press, Inc., New York (1960).Google Scholar
  13. 12.
    S. T. Stoy, ibid.Google Scholar
  14. 13.
    R.J. Richards, Rev. Sci. instr., Vol. 25, 520 (1954).CrossRefGoogle Scholar
  15. 14.
    R. P. Mikesell and R. B. Scott, J. Res. of Nat. Bur. of Standards, Vol. 57, 371 (1956).CrossRefGoogle Scholar
  16. 15.
    R.M. McClintock and M.J. Hiza, Mod. Plastics, Vol. 35, No. 10. 172 (1958).Google Scholar
  17. 16.
    R.S. Hickman, R.W. Kenney, R.C. Mathewson, and R. A. Perkins, Rev. Sci. Instr., Vol. 30, 983 (1959).CrossRefGoogle Scholar
  18. 17.
    R.L. Powell, M.D. Bunch, and L. P. Caywood, Advances in Cryogenic Engineering, Vol. 6, K.D. Timmerhaus (ed.), Plenum Press, Inc., New York (1961).Google Scholar

Copyright information

© Springer Science+Business Media New York 1961

Authors and Affiliations

  • R. M. McClintock
    • 1
  • K. A. Warren
    • 1
  1. 1.CEL National Bureau of StandardsBoulderUSA

Personalised recommendations