Superconducting Magnets

  • V. D. Arp
  • R. H. Kropschot
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 6)


The use of a superconductor as the current-carrying element of an electromagnet is one of the most obvious applications of this unique property of certain metals at liquid helium temperatures, The resistivity of superconductors has been measured at less than 8 • 10-25 ohm-meters [1], and a detailed quantum-mechanical theory [2]: predicts that it is identically equal to zero. Since all. the Joule heating in a. conventional electromagnet is wasted, the use of a supercon-ducting magnet would result, in a power saving ranging from about 5 kw for a typical laboratory magnet to perhaps 10 Mw for the largest existing magnet. In addition, the relaxed requirement on the power output of the current source makes that source easier to build, maintain, and control. In some cases, a pulse of power may be used to start a persistent current and the only additional power required is for refrigeration to maintain the low temperature. It is very possible that a high-field superconducting electromagnet would be more compact than the conventional magnet it replaces.


Joule Heating Critical Field Superconducting Magnet Persistent Current Thin Film Magnet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. F. Hildebrandt and D.D. Ellemen, Bull, Am. Phys. Soc., Vol. 5, 111 (1960).Google Scholar
  2. 2.
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev., Vol. 108, 1175 (1958).CrossRefGoogle Scholar
  3. 3.
    F. B. Silsbee, Bull. Bur. Standards, Vol. 14, 301 (1917).CrossRefGoogle Scholar
  4. 4.
    D. B. Cook, M. W. Zemsnsky, and H.A. Bourse, Phys. Rev., Vol. 80, 737 (1950).CrossRefGoogle Scholar
  5. 5.
    S.H. Autler, Rev.Sci. Instr., Vol. 31, 369 (1960).CrossRefGoogle Scholar
  6. 6..
    W. J. de Haas and J. Voogd, Commun. Phys. Lab. Univ. Leiden No, 214b.Google Scholar
  7. 7.
    R.R. Hake, D.H. Leslie, and T.G. Berlincourt, Bull, Am. Phys. Soc., Vol. 4, 362 (1959).Google Scholar
  8. 8.
    W. H. Keesom, Physics, Vol. 2, 35 (1935).Google Scholar
  9. 9.
    J. N. Rjabinin and L.W. Shubnikow, Physik. Z. Sowjetunion, Vol. 7, 122 (1935).Google Scholar
  10. 10.
    D. Shoenberg, Superconductivity, 2nd ed. Cambridge University Press, London (1960).Google Scholar
  11. 11.
    N. V. Zavaritski, Doklady Akad. Nauk SSSR., Vol. 78, 665 (1951);Google Scholar
  12. 11a.
    N. V. Zavaritski, Doklady Akad. Nauk SSSR., Vol. 85, 749 (1952).Google Scholar
  13. 12.
    D. M. Ginsberg and M. Tinkham, Bull. Am. Phys. Soc., Vol. 3, 338 (1958).Google Scholar
  14. 13.
    V.L. Ginzburg. Doklady Akad. Nauk. SSSR., Vol. 118, 464 (1958) (and references cited therein).Google Scholar
  15. 14.
    J. W. Bremer and V.L. Newhouse, Phys. Rev., Vol. 116, 309 (1959).CrossRefGoogle Scholar
  16. 15.
    N.I. Ginzburg and A.I. Shal’nikov, Soviet Phys. JETP, Vol. 37, 285 (1960).Google Scholar
  17. 16.
    E.T.S. Appleyard, J.R. Brlstow, H. London, and A.D. Misener, Proc. Roy. Soc. (London), Vol. A172, 540 (1939).Google Scholar
  18. 17..
    V. Arp and R. H. Kropschot (to be published).Google Scholar
  19. 18..
    K. Lou, Unit. of Calif. Radiation Laboratory (Unpublished Results).Google Scholar
  20. 19.
    R. P. Post and C. E. Taylor, “Air-Core Cryogenic Magnet Coils for Fusion Research and High-Energy Nuclear Physics Applications,” Advances in Cryogenic Engineering, Vol. 5, K.D. Timmerhaus, (ed.). Plenum Press, Inc., New York (1960);Google Scholar
  21. C. E. Taylor and R. P. Post, “Design of Large Cryogenic Magnet Coils,” Advances in Cryogenic Engineering, Vol. 5, K.D. Timmerhaus, (ed.). Plenum Press, Inc., New York (1960); ibid.Google Scholar

Copyright information

© Springer Science+Business Media New York 1961

Authors and Affiliations

  • V. D. Arp
    • 1
  • R. H. Kropschot
    • 1
  1. 1.CEL National Bureau of StandardsBoulderUSA

Personalised recommendations