Skip to main content

An Experimental Investigation of the Individual Boiling and Condensing Heat-Transfer Coefficients for Hydrogen

  • Conference paper
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 7))

Abstract

The efficient design of low-temperature hydrogen heat exchangers requires detailed heat-transfer information relevant to temperature gradients, heatfluxes, surface conditions and geometry, materials of construction, flow rates, and other important variables. This investigation determined only the relationship between the individual film heat-transfer coefficients and the variables of temperature difference and heat flux for boiling and condensing hydrogen films on a smooth vertical tube surface. The boiling occurred on the outside surface while the condensing took place on the inside surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. N. Mulford, J. P. Nigon, J. G. Dash, and W. E. Keiler, “Low Temperature Heat-Transfer Studies” U.S. Atomic Energy Commission, National Science Foundation, Washington, D.C, LA-1416 (1952),

    Google Scholar 

  2. C.R. Glass, J.R. DeHaan, M. Piccone, and R. B. Cost, “Pool Boiling Heat Transfer to a Cryogenic Liquid, ”WADC Tech. Rept. 58–528 (October, 1958).

    Google Scholar 

  3. C.R. Class, J. R. DeHaan, M. Piccone, and R. B. Cost, Advances in Cryogenic Engineering, Vol. 5, K. D. Timmerhaus (ed.,), Plenum Press, Inc., New York (1960), p. 254.

    Google Scholar 

  4. M. P. Malkov, A.G. Zeldovitch, A.D. Fradkov, and I. B. Danilov, in Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Vol. 4, 491–8 (1958).

    Google Scholar 

  5. From [23] attributed to F.G. Brickwedde.

    Google Scholar 

  6. L. Weil and A. Lacaze, “Echanges de Chaleur dans L’Hydrogène Bouillant Sous Pression Atmosphérique, ” Société Française de Physique, Procès-Verbaux et Résumés des communications, No. 9, 890, (1951).

    Google Scholar 

  7. H.K. Forster and N. Zuber, A.I.Ch.E. journal, Vol. 1, 531–5 (1955).

    Article  Google Scholar 

  8. K. E. Forster and R. Greif, Heat Transfer, Vol. 81, 43–53 (1959).

    Google Scholar 

  9. M. J. McNeliy, J. Imp. College Ghem. Eng. Soc. Vol. 7, 18–34 (1953).

    Google Scholar 

  10. J. W. Westwater, Advances in Chemical Engineering, Academic Press, New York (1956), p. 1–76.

    Google Scholar 

  11. W. Nusselt, Z. Ver. deut. Ingenieurw., Vol. 60, 541, 569 (1916).

    Google Scholar 

  12. W.H. McAdaras, Heat Transmission, McGraw Hill Book Co., Inc., New York (1954), 3rd ed., p. 330.

    Google Scholar 

  13. W.M. Rohsenow, Trans. Am. Soc. Mech. Engr., Vol. 79, 1645–8 (1956).

    Google Scholar 

  14. W.H. McAdams, Trans. Am. Soc. Mech. Engr., Vol. 79, p. 5. 1956

    Google Scholar 

  15. R. B. Scott, Cryogenic Engineering, D. Van Nostrand Company, Inc., Princeton, New Jersey (1959). p. 304.

    Google Scholar 

  16. R. B. Scott, Cryogenic Engineering, D. Van Nostrand Company, Inc., Princeton, New Jersey (1959). p. 298.

    Google Scholar 

  17. M. Jakob, Heat Transfer, Vol. p, John Wiley & Sons, Inc., New York (1958), p. 132.

    Google Scholar 

  18. W. H. McAdams, Heat Transfer, Vol. p, John Wiley & Sons, Inc., New York (1958), p. 6.

    Google Scholar 

  19. W.H. McAdams, Heat Transfer, Vol. p, John Wiley & Sons, Inc., New York (1958), p. 374.

    Google Scholar 

  20. J.C. Chu, R.K. Flitcraft, and M.R. Holeman, Ind. Eng. Chem., Vol. 41, 1789–94 (1949).

    Article  Google Scholar 

  21. E. Baer and J. M. McKelvey, A.I.Ch.E. Journal, Vol. 4, 218–22 (1948).

    Article  Google Scholar 

  22. V.J. Johnson, “A Compendium of the Properties of Materials at Low Temperatures (Phase 1). Part 1. Properties of Fluids. Part II. Properties of Solid, ”WADC Tech. Rept. 60–56 (1960).

    Google Scholar 

  23. J. O. Maloney, G. F. Quinn, and H. S.Ray, Production of Heavy Water, McGraw-Hill Book Company, Inc., New York (1955), 1st ed., pp. 91–2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer Science+Business Media New York

About this paper

Cite this paper

Drayer, D.E., Timmerhaus, K.D. (1962). An Experimental Investigation of the Individual Boiling and Condensing Heat-Transfer Coefficients for Hydrogen. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0531-7_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0531-7_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0533-1

  • Online ISBN: 978-1-4757-0531-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics