Skip to main content

Solid—Vapor Equilibria of the Oxygen—Hydrogen System

  • Conference paper
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 7))

Abstract

The handling hazard associated with the potential explosibility of mixtures of solid oxygen with high-pressure gaseous hydrogen provided the incentive for the phase equilibria and thermodynamic study which is reported in this paper. The specific concern is with the behavior of oxygen which is present as a trace impurity (concentration of a few parts per million) in a high-pressure hydrogen stream which is being cooled. Oxygen crystallizes during the cooling process when the saturation concentration of oxygen is reached. The exact temperature depends upon the total pressure and the oxygen concentration; for low concentrations, the temperature is below the triple point temperature of -361.8°F. The possibility always exists that solid oxygen may concentrate in heat exchangers and other process components which are at temperatures lower than the triple point. Even at very low concentrations, the oxygen may accumulate and cause hazardous conditions. The data on the solid—vapor equilibria of the oxygen—hydrogen system are, therefore, of considerable value for the safe design and operation of hydrogen liquefaction equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Prausnitz, A.I.Ch.E. J., Vol. 5, 3 (1959).

    Article  Google Scholar 

  2. J.M. Prausnitz and P.R. Benson, A. I. Ch.E. J., Vol. 5, 161 (1959).

    Article  Google Scholar 

  3. J.M. Prausnitz and R.D. Gunn, A.I.Ch.E. J., Vol. 4, 430 (1958).

    Article  Google Scholar 

  4. J. B. Hanney and J. Hogarth, Proc. Roy, Soc., Vol. 30, 178 (1880).

    Article  Google Scholar 

  5. F. Pollitzer and E. Strebel, Z. physik. Chem., Vol. 110, 768 (1924).

    Google Scholar 

  6. K. Jasmund, Heidelberger Beitr. Mineral, u. Petrog., Vol. 3, 380 (1953).

    Google Scholar 

  7. G. A. M. Diepen and F. E. C. Scheffer, J. Am. Ghem. Soc., Vol. 70, 4085 (1948).

    Google Scholar 

  8. T. J. Webster, Proc, Roy. Soc. (London), Vol. A214, 61 (1952).

    Article  Google Scholar 

  9. S. Graten, “Final Report on Low Temperature Properties of Carbon Dioxide—Air Mixtures by Means of One Stage Experiment,” University of Pennsylvania Thermodynamics Research Lab. (July 1, 1945 to April 30, 1946).

    Google Scholar 

  10. Air Products and Chemicals Inc. (unpublished data),

    Google Scholar 

  11. A.H. Ewald, W.B. Jepson, and J.S. Rowlinson, Discussions Faraday Soc., Vo;. A5, 238 (1953).

    Article  Google Scholar 

  12. Z. Dokoupil, G. Van Soest, and M.D.P. Swenker, Appl. Sci. Res., Vol. A5, 182 (1955).

    Google Scholar 

  13. K. S. Pitzer and R. F. Curl Jr., J. Am. Chem. Soc., Vol. 79, 2369 (1957).

    Article  Google Scholar 

  14. K.S. Pitzer, J.Am. Chem. Soc., Vol. 77, 3427 (1955).

    Google Scholar 

  15. J.O. Hirschfelder, C.F. Gurtiss, and R.B. Bird, Molecular Theory of Gases and Liquids, John Wiley and Sons, New York (1954), p. 1116.

    Google Scholar 

  16. J.M. Prausnitz (personal communication).

    Google Scholar 

  17. S. Aoyama and E. Kanda, J. Chem. Soc. (Japan), Vol. 55, 23 (1934).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer Science+Business Media New York

About this paper

Cite this paper

McKinley, C., Brewer, J., Wang, E.S.J. (1962). Solid—Vapor Equilibria of the Oxygen—Hydrogen System. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0531-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0531-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0533-1

  • Online ISBN: 978-1-4757-0531-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics