Metastable Superheat in Nucleate Boiling of Cryogenic Liquids

  • T. H. K. Frederking
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 9)

Abstract

The metastable superheat ΔT attainable by a liquid above its saturation temperature is important in nucleate boiling. Aside from the boiling description, however, a knowledge of AT also provides criteria for heat transport transition when bubble formation is entirely suppressed. A nonboiling liquid may be heated to the maximum metastable superheat before it disintegrates [1]. As soon as the wall excess temperature increases beyond the limiting superheat value, the system will enter the Leidenfrost regime, within which liquid is converted into the completely disordered phase when it approaches the hot walls.

Keywords

Peak Data Peak Flux Cryogenic Liquid Heat Flow Density Nucleus Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Grassmann, Phys. Grundlagen der Chemie-Ingenieur-Technik, Sauerländer (1961), p. 669.Google Scholar
  2. 2.
    T. H. K. Frederking, in Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 489.Google Scholar
  3. 3.
    K. E. Forster and R. Greif, Trans. ASMS, J. Heat Transfer, 81C, 43 (1959).Google Scholar
  4. 4.
    S. S. Kutateladze, Izvest Akad. Nauk, SSSR, Otdel. Tekh. Nauk, 4, 529 (1951).Google Scholar
  5. 5.
    R. J. Richards, W. G. Steward, and R. B. Jacobs, NBS Tech. Note No. 122 (1961).Google Scholar
  6. 6.
    L. Weil, No. 210, IVe Congr. Intern. Chauffage Industr., Paris (1952).Google Scholar
  7. 7.
    G. G. Haselden and T. L Peters, Trans. Am. Inst. Chem. Eng. 27, 201 (1949).Google Scholar
  8. 8.
    L. Bochirol, E. Bonjour, and L. Weil, in Problems of Low-Temper attire Physics and Thermodynamics, Vol 2, Pergamon Press, New York (1962), p. 251.Google Scholar
  9. 9.
    P. Roubeau, in Progress in Refrigeration Science and Technology, Vol. 1 (Proceedings, Tenth Intern. Cong. Refrig., Copenhagen, 1959), (1960), p. 49.Google Scholar
  10. 10.
    R. Ruzicka, in Problems of Low-Temperature Physics and Thermodynamics, Pergamon Press, New York (1959), p. 323.Google Scholar
  11. 11.
    T.H.K. Frederking, Forschung., 27, 17, 58 (1961).Google Scholar
  12. 12.
    T. M. Flynn, J. W. Draper, and T. T. Roos, in Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 539.Google Scholar
  13. 13.
    H. Merte and J. A. Clark, in Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 546.Google Scholar
  14. 14.
    L. Weil and A. Lacaze, 9e Congrès Intern, du Froid, Comm. I et II, No. 1, 13.Google Scholar
  15. 15.
    R. N. Mulford and J. P. Nigon, Los Alamos Sci. Lab., Rept. LA-1416 (1952).Google Scholar
  16. 16.
    H. H. Walters, in Advances in Cryogenic Engineering, Vol. 6, Plenum Press, New York (1961), p. 509.Google Scholar
  17. 17.
    C. R. Class, J. R. DeHaan, M. Piceone, and R. B. Cost, in Advances in Cryogenic Engineering, Vol. 5, Plenum Press, New York (1960), p. 254.Google Scholar
  18. 18.
    A. Karagounis, Bull. inst. intern. froid, Annexe 2 (1956), p. 195.Google Scholar
  19. 19.
    H. Meissner, Phys. Rev., 109, 677 (1958).Google Scholar
  20. 20.
    M. D. Reeber, J. Appl. Phys., 34, 481 (1963).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1964

Authors and Affiliations

  • T. H. K. Frederking
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations