Basic Problems in Cryobiology

Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 9)


Cryobiology, like cryogenics and low-temperature physics, deals with phenomena at low temperatures, but differs from them in that most phenomena of biological interest occur above -150°C rather than near absolute zero. This quasi-existence of a biological “zero” at about 123°K arises from the fact that biological organisms contain 70% or more water, and it is only above -150°C that gross physical changes in the structure and properties of water occur [1].


Supercooled Water Cooling Velocity Intracellular Freezing Pure Liquid Water Optimum Cool Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. G. Dowell and A. P. Rinfret, Nature 188, 1144 (1960).CrossRefGoogle Scholar
  2. 2.
    A. U. Smith, “Biological Effects of Freezing and Supercooling,” Monographs of the Physiological Society, No. 9, Williams and Wilkins Co., Baltimore (1961).Google Scholar
  3. 3.
    L. I. Rebhun, J. Biophys. Biochem. Cytol., 9, 785 (1961).CrossRefGoogle Scholar
  4. 4.
    I. S. Cooper, “Principles and Rationale of Cryogenic Surgery,” St. Barnabas Hosp. Med. Bull., 1, 5 (1962).Google Scholar
  5. 5.
    “Hypothermia,” Ann. N.Y. Acad. Sci., 80, 285 (1959).Google Scholar
  6. 6.
    W. A. Arnold and R. K. Clayton, Proc. Natl Acad. Sci. U.S., 46, 769 (1960).CrossRefGoogle Scholar
  7. 7.
    J. Levitt, “The Hardiness of Plants,” in Agronomy, Vol. 6, Academic Press, New York (1956).Google Scholar
  8. 8.
    P. Mazur, Biophys. J., 3, 323 (1963).CrossRefGoogle Scholar
  9. 9.
    P. Mazur, J. Gen. Physiol., 47, 347 (1963).CrossRefGoogle Scholar
  10. 10.
    A. K. Solomon, J. Gen. Physiol, 43, (supplement), 1 (1960).CrossRefGoogle Scholar
  11. 11.
    F. C. Magne, H. J. Portas, and H. Wakeham, J. Am. Chem. Soc., 69, 1896 (1947).CrossRefGoogle Scholar
  12. 12.
    P. Mazur, Ann. N. Y. Acad. Sci., 85, 610 (1960).CrossRefGoogle Scholar
  13. 13.
    N. H. Fletcher, The Physics of Rain Clouds, Cambridge University Press, Cambridge (1962).Google Scholar
  14. 14.
    E. Asahina, Nature, 191, 1263 (1961).CrossRefGoogle Scholar
  15. 15.
    T. Nei, in Culture Collections: Perspectives and Problems, 8. M. Martin (ed.), Toronto University Press (1963), p. 74.Google Scholar
  16. 16.
    H. T. Meryman and W. T. Platt, “The Distribution and Growth of Ice Crystals in Frozen Mammalian Tissue,” Naval Medical Res. Inst. Res. Rept. Proj. NM 000 018.01.08, (3 Jan. 1955).Google Scholar
  17. 17.
    P. Mazur,J. Bacteriol., 82, 662 (1961).Google Scholar
  18. 18.
    P. Mazut, Biophys, J., 1, 247 (1961).CrossRefGoogle Scholar
  19. 19.
    J. E. Lovelock, Biockim. Biophys. Acta, 10, 414 (1953).CrossRefGoogle Scholar
  20. 20.
    T. Araki and T. Nei, Low Temp. Sci. (B), 20, 57 (1962).Google Scholar
  21. 21.
    P. M. Gehenio and B. J. Luyet, Federation Proc., 17, 52 (1958).Google Scholar
  22. 22.
    J. L. Stephenson,J. Biophys. Biochem. Cytoi. Supply., 2, 45 (1956).CrossRefGoogle Scholar
  23. 23.
    H. Férnandéz-Moran, Arm. N.Y. Acad. Sci., 85, 689 (1960).CrossRefGoogle Scholar
  24. 24.
    G. F. Doebbler and A. P. Rinfret, J. Bacteriol, 85, 485 (1963).Google Scholar
  25. 25.
    B. J. Luyet and P. M. Gehenio, Life and Death at Low Temperatures, Biodynainica, Normandy, Mo, (1940).Google Scholar
  26. 26.
    H. T. Meryman, Proc. Roy. Soc. (London) B, 147, 452 (1957).CrossRefGoogle Scholar
  27. 27.
    D. A. Copson, Microwave Heating, AVI Publish. Co., Westport, Conn. (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1964

Authors and Affiliations

  1. 1.Biology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations