Skip to main content

Nucleate Boiling Heat Transfer Coefficients and Peak Nucleate Boiling Fluxes for Pure Liquid Nitrogen and Oxygen on Horizontal Platinum Surfaces from Below 0.5 Atmosphere to the Critical Pressures

  • Conference paper
Book cover Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 9))

Abstract

Boiling heat transfer coefficients for liquid nitrogen and/or liquid oxygen have been reported by various investigators [1–9]. The work of various investigators and in particular the work of Lyon [9] has shown that even slight changes in the chemical nature of the solid surface produce large variations in the boiling performance of the surface. Few, if any, measurements exist for different liquids on a surface of the same microscopic chemical and physical character. The results reported here are part of a program to obtain accurate, reliable data for a variety of liquids on a given surface under conditions where variations in the solid surface are eliminated and the role of liquid properties in the boiling process can be accurately identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. F. Glauque, J. W. Stout, R. E. Barieau and C. J. Egan, Report of March 1, 1942, Division B, National Defense Research Committee, Office of Scientific Research and Development, OSRD No. 491, Serial No. 201 (1942).

    Google Scholar 

  2. G. G. Haselden and J. I. Peters, Trans. Inst. Chem. Engrs., 27, 201 (1949).

    Google Scholar 

  3. G. G. Haselden and S. Prasad, Trans. Inst. Chem. Engrs., 27, 195 (1949).

    Google Scholar 

  4. L. Weil and A. Lacaze, Bull. inst. intern. froid. Annexe (1955–2), 85 (1954).

    Google Scholar 

  5. J. J. Fritz and H. L. Johnston, Rev. Sci. Instr., 21, 416 (1950).

    Article  Google Scholar 

  6. R. N. Mulford and J. P. Nigon, Los Alamos Scientific Laboratory Report, LA-1416 (unclassified) (1952).

    Google Scholar 

  7. J. Ruzicka, Problems of Low Temperature Physics and Thermodynamics (Proc. of Meeting of Coram. 1 of Int. Inst. Refrig. 1958), Pergamon Press, New York (1959), p. 323.

    Google Scholar 

  8. T. M. Flynn, J. W. Draper, and J. J. Roos, in Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 539.

    Google Scholar 

  9. D.N. Lyon, submitted for publication.

    Google Scholar 

  10. W. F. Glauque, R. M. Buffington, and W. A. Schulze, J. Am. Chem. Soc., 49, 2343 (1927).

    Google Scholar 

  11. M. T. Cichelii and C. F. Bonilla, Trans. Am. Inst. Chem. Bngrs., 41, 755 (1945).

    Google Scholar 

  12. P. Roubeau (Centre études nucleaires, Saclay) Comm, energie at. (France) Rappt. No. 1877, 49–53 (1961).

    Google Scholar 

  13. W. M. Rohsenow and P. Griffith, Chem. Eng. Progr., Symposium Series, No, 17, 52, 47 (1956).

    Google Scholar 

  14. S. S. Kutateladze, Izvest. Akad. Nauk SSSR, Otdel. Tekh. Nauk, No. 4, 342 (1951).

    Google Scholar 

  15. N. Zuber, Trans. ASME, 80, 711 (1958); N. Zuber and M. Tribus, UCLA Report No. 58–5 (Jan, 1958).

    Google Scholar 

  16. A. I. Morgan, L. A. Bromley, and C. R. Wilke, Ind. Eng. Chem., 41, 2767 (1949).

    Article  Google Scholar 

  17. J. T. Banchero, G. E. Barker, and R. H. Boll, Chem. Eng. Prog., Symposium Series, No. 17, 51, 21 (1956).

    Google Scholar 

  18. D. Stansfield, Proc. Phys. Soc. (London), 72, 854 (1958).

    Article  Google Scholar 

  19. A. Ferguson and S. J. Kennedy, Trans. Faraday Soc., 32, 1474 (1936).

    Article  Google Scholar 

  20. Int. Critical Tables IV, McGraw-Hill, New York (1928), p. 441.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1964 Springer Science+Business Media New York

About this paper

Cite this paper

Lyon, D.N., Kosky, P.G., Harman, B.N. (1964). Nucleate Boiling Heat Transfer Coefficients and Peak Nucleate Boiling Fluxes for Pure Liquid Nitrogen and Oxygen on Horizontal Platinum Surfaces from Below 0.5 Atmosphere to the Critical Pressures. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0525-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0525-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0527-0

  • Online ISBN: 978-1-4757-0525-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics