Nucleate Boiling Heat Transfer Coefficients and Peak Nucleate Boiling Fluxes for Pure Liquid Nitrogen and Oxygen on Horizontal Platinum Surfaces from Below 0.5 Atmosphere to the Critical Pressures

Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 9)


Boiling heat transfer coefficients for liquid nitrogen and/or liquid oxygen have been reported by various investigators [1–9]. The work of various investigators and in particular the work of Lyon [9] has shown that even slight changes in the chemical nature of the solid surface produce large variations in the boiling performance of the surface. Few, if any, measurements exist for different liquids on a surface of the same microscopic chemical and physical character. The results reported here are part of a program to obtain accurate, reliable data for a variety of liquids on a given surface under conditions where variations in the solid surface are eliminated and the role of liquid properties in the boiling process can be accurately identified.


Heat Transfer Coefficient Test Element Platinum Surface Peak Flux Liquid Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. F. Glauque, J. W. Stout, R. E. Barieau and C. J. Egan, Report of March 1, 1942, Division B, National Defense Research Committee, Office of Scientific Research and Development, OSRD No. 491, Serial No. 201 (1942).Google Scholar
  2. 2.
    G. G. Haselden and J. I. Peters, Trans. Inst. Chem. Engrs., 27, 201 (1949).Google Scholar
  3. 3.
    G. G. Haselden and S. Prasad, Trans. Inst. Chem. Engrs., 27, 195 (1949).Google Scholar
  4. 4.
    L. Weil and A. Lacaze, Bull. inst. intern. froid. Annexe (1955–2), 85 (1954).Google Scholar
  5. 5.
    J. J. Fritz and H. L. Johnston, Rev. Sci. Instr., 21, 416 (1950).CrossRefGoogle Scholar
  6. 6.
    R. N. Mulford and J. P. Nigon, Los Alamos Scientific Laboratory Report, LA-1416 (unclassified) (1952).Google Scholar
  7. 7.
    J. Ruzicka, Problems of Low Temperature Physics and Thermodynamics (Proc. of Meeting of Coram. 1 of Int. Inst. Refrig. 1958), Pergamon Press, New York (1959), p. 323.Google Scholar
  8. 8.
    T. M. Flynn, J. W. Draper, and J. J. Roos, in Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 539.Google Scholar
  9. 9.
    D.N. Lyon, submitted for publication.Google Scholar
  10. 10.
    W. F. Glauque, R. M. Buffington, and W. A. Schulze, J. Am. Chem. Soc., 49, 2343 (1927).Google Scholar
  11. 11.
    M. T. Cichelii and C. F. Bonilla, Trans. Am. Inst. Chem. Bngrs., 41, 755 (1945).Google Scholar
  12. 12.
    P. Roubeau (Centre études nucleaires, Saclay) Comm, energie at. (France) Rappt. No. 1877, 49–53 (1961).Google Scholar
  13. 13.
    W. M. Rohsenow and P. Griffith, Chem. Eng. Progr., Symposium Series, No, 17, 52, 47 (1956).Google Scholar
  14. 14.
    S. S. Kutateladze, Izvest. Akad. Nauk SSSR, Otdel. Tekh. Nauk, No. 4, 342 (1951).Google Scholar
  15. 15.
    N. Zuber, Trans. ASME, 80, 711 (1958); N. Zuber and M. Tribus, UCLA Report No. 58–5 (Jan, 1958).Google Scholar
  16. 16.
    A. I. Morgan, L. A. Bromley, and C. R. Wilke, Ind. Eng. Chem., 41, 2767 (1949).CrossRefGoogle Scholar
  17. 17.
    J. T. Banchero, G. E. Barker, and R. H. Boll, Chem. Eng. Prog., Symposium Series, No. 17, 51, 21 (1956).Google Scholar
  18. 18.
    D. Stansfield, Proc. Phys. Soc. (London), 72, 854 (1958).CrossRefGoogle Scholar
  19. 19.
    A. Ferguson and S. J. Kennedy, Trans. Faraday Soc., 32, 1474 (1936).CrossRefGoogle Scholar
  20. 20.
    Int. Critical Tables IV, McGraw-Hill, New York (1928), p. 441.Google Scholar

Copyright information

© Springer Science+Business Media New York 1964

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations