Cryogenics and Aluminum in Electrical Manufacturing

  • P. Burnier
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 11)


The rating of electrical generators and transformers has risen from 50 MVA to more than 600 MVA during the last twenty years. This has been possible through higher stresses on conductors, insulators, and magnetic materials. The progress made simultaneously on dielectric and magnetic materials has kept the corresponding losses at a relatively low level; however, the losses in the windings become substantial for the larger units, since the resistivity of copper has not changed. Cryogenics offers a new means in overcoming this difficulty by using either superconductivity or the normal conductivity of high-purity metals at low temperatures.


Dielectric Strength Liquid Hydrogen Eddy Current Loss Cryogenic Fluid High Dielectric Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. McFee, Power Engineering 65:80 (October 1961);Google Scholar
  2. 1a.
    R. McFee, Elect. Eng. 80:754 (October 1961), andGoogle Scholar
  3. 1b.
    R. McFee, Elect. Eng. 81: 122 (February 1962).Google Scholar
  4. 2.
    G. Fournet, J. Huret, and A. Mailfert, Bull. Soc. Franc. Electriciens, 8ème Série, 5(58):651 (October 1964).Google Scholar
  5. 3.
    K. J. R. Wilkinson, Proc. I.E.E. 110(12):2, 271 (December, 1963).Google Scholar
  6. 4.
    N. F. Mott and P. D. Jones, The Theory of the Properties of Metals and Alloys, Dover Publications, Inc., New York (1958), p. 239.Google Scholar
  7. 5.
    C. Kittel, Solid State Physics, John Wiley and Sons, Inc., New York (1956); French ed.: Introduction à la Physique de l’État Solide, Dunod, Paris (1958), p. 300.Google Scholar
  8. 6.
    K. Mendelssohn, Cryophysics, Interscience Publ. Inc., New York (1960); French ed., Cryophysique, Dunod, Paris (1963), p. 77.Google Scholar
  9. 7.
    K. Fuchs, Proc. Cambridge Phil. Soc. 34:100 (1938).CrossRefGoogle Scholar
  10. 8.
    E. H. Sondheimer, in: Advan. Phys. 10(1):1 (1952); see also pp. 10, 18, 20.Google Scholar
  11. 9.
    D. K. C. MacDonald and K. Sarginson, Proc. Phys. Soc. (London) A203:223 (1950);Google Scholar
  12. 9a.
    D. K. C. MacDonald and K. Sarginson, Rep. Progr. Phys. (London) 15:243 (1952).Google Scholar
  13. 10.
    J. Bonmarin, A. de la Harpe, M. Renard, D. Marinet. P. Laurenceau, and P. Burnier. Paper presented at the European Symposium on Electrical Conduction at Low Temperatures, London (May 20–21, 1965), (proceedings to be published).Google Scholar
  14. 11.
    P. Burnier and P. Laurenceau, Rev. Gén. Elec. 74(6):533 (1965).Google Scholar
  15. 12.
    J. P. Pouillange, Rev. Gén. Elec. 74(7–8):629 (1965).Google Scholar
  16. 13.
    K. N. Mathes, Electro-Technol. 72:72 (1963).Google Scholar
  17. 14.
    B. Hochart, Rev. Gén. Elec. 74(7–8):626 (1965).Google Scholar
  18. 15.
    H. Vayson de Pradenne, Rev. Gén. Elec. 74(7–8):631 (1965).Google Scholar
  19. 16.
    S. Lehongre. Rev. Gén. Elec., 74(7–8):634 (1965).Google Scholar
  20. 17.
    P. Burnier, Rev. Gén. Elec. 74(7–8):624 (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • P. Burnier
    • 1
  1. 1.AlsthomParisFrance

Personalised recommendations