Critical State of Superconducting Solenoids

  • M. S. Lubell
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 11)

Abstract

The critical state is a term introduced by Bean [1] to describe the magnetic properties of a bulk type II superconductor. In this state every region of the superconducting material carries the maximum induced critical current density. Kim, Hempstead, and Strnad [2] extended this idea through experiments on the resistive states of cylindrical tubes of Nb3Sn and Nb-25% Zr to show that a Lorentz force type equation relates the field and the current density as determined by the local value of field in the critical state. Their empirical relation is
$$\alpha = J_c (H + B_o )$$
(1)
where J c is the current density, H is magnetic field, and α and B 0 are temperature-sensitive constants depending on the microstructure of the material. α essentially is the high-field (HB 0) Lorentz force and is a measure of the maximum current-carrying capacity. The physical origin of B 0 is not understood. Kim et al. [2] measured the temperature dependence of α and also found that the persistent currents decayed as the logarithm of time. The theoretical verification of these observations was given by Anderson [3,4] in Ms flux creep theory. The core of this theory is thermally activated motion of flux bundles aided by the Lorentz force to overcome the pinning effects of physical defects. The importance of the Lorentz force on the flux lines already had been pointed out by Gorter [5]. In addition to the work cited, others have shown that (1) is satisfied for single crystal whiskers and strips of Nb3Sn [6–8].

Keywords

External Field Lorentz Force Critical Current Density Transport Current Persistent Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. P. Bean, Phys. Rev. Letters 8:250 (1962);CrossRefGoogle Scholar
  2. 1a.
    C. P. Bean, Rev. Mod. Phys, 36:31 (1964).CrossRefGoogle Scholar
  3. 2.
    Y. B. Kim, C. P. Hempstead, and A. R. Strnad, Phys. Rev. Letters 9:306 (1962);CrossRefGoogle Scholar
  4. 2a.
    Y. B. Kim, C. P. Hempstead, and A. R. Strnad, Phys. Rev. 129:528 (1963) andCrossRefGoogle Scholar
  5. 2b.
    Y. B. Kim, C. P. Hempstead, and A. R. Strnad, Phys. Rev. 131:2486 (1963).CrossRefGoogle Scholar
  6. 3.
    P. W. Anderson, Phys. Rev. Letters 9:309 (1962).CrossRefGoogle Scholar
  7. 4.
    P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36:39 (1964).CrossRefGoogle Scholar
  8. 5.
    C. J. Goiter, Phys. Letters 1:69 (1962) andCrossRefGoogle Scholar
  9. 5a.
    C. J. Goiter, Phys. Letters 2:26 (1962).CrossRefGoogle Scholar
  10. 6.
    G. W. Cullen, G. D. Cody, and J. P. McEvoy, Jr., Phys. Rev. 132:577 (1963).CrossRefGoogle Scholar
  11. 7.
    G. D. Cody, G. W. Cullen, and J. P. McEvoy, Jr., Rev. Mod. Phys. 36:95 (1964).CrossRefGoogle Scholar
  12. 8.
    G. D. Cody and G. W. Cullen, Paper presented at Conference on the Physics of Type II Super-conductors, Cleveland, Ohio, August 28–29, 1964.Google Scholar
  13. 9.
    J. Silcox and R. W. Rollins, Appl. Phys. Letters 2:231 (1963);CrossRefGoogle Scholar
  14. 9a.
    J. Silcox and R. W. Rollins, Rev. Mod. Phys. 36:52 (1964).CrossRefGoogle Scholar
  15. 10.
    K. Yasuköchi, T. Ogasawara, N. Usui, and S. Ushio, J. Phys. Soc. (Japan) 19:137 (1964) andCrossRefGoogle Scholar
  16. 10a.
    K. Yasuköchi, T. Ogasawara, N. Usui, and S. Ushio, J. Phys. Soc. (Japan) 19:1649(1964).CrossRefGoogle Scholar
  17. 11.
    H. Riemersma, J. Appl. Phys. 35:1802 (1964).CrossRefGoogle Scholar
  18. 12.
    M. A. R. Leblanc, Phys. Letters 8:226 (1964).CrossRefGoogle Scholar
  19. 13.
    W. A. Fietz, M. R. Beasley, J. Silcox, and W. W. Webb, Phys. Rev. 136:A335 (1964).CrossRefGoogle Scholar
  20. 14.
    M. S. Lubell, B. S. Chandrasekhar, and G. T. Mallick, Appl. Pkys. Letters 3:79 (1963).CrossRefGoogle Scholar
  21. 15.
    H. Riemersma, J. K. Hulm, and B. S. Chandrasekhar, in.: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 329.Google Scholar
  22. 16.
    E. R. Schrader, N. S. Freedman, and J. C. Fakan, Appl. Phys. Letters 4:105 (1964).CrossRefGoogle Scholar
  23. 17.
    M. A. R. Leblanc, Phys. Rev. 124:1423 (1961).CrossRefGoogle Scholar
  24. 18.
    J. P. McEvoy, Jr. and R. F. Decell, J. Appl. Phys. 35:982 (1964).CrossRefGoogle Scholar
  25. 19.
    H. T. Coffey, J. K. Hulm, W. T. Reynolds, D. K. Fox, and R. E. Span, J. Appl. Phys. 36:128 (1965).CrossRefGoogle Scholar
  26. 20.
    M. W. Dowley,Appl. Phys. Letters 4:41 (1964).CrossRefGoogle Scholar
  27. 21.
    M. S. Lubell, G. T. Mallick, and B. S. Chandrasekhar, J. Appl. Phys. 35:956 (1964).CrossRefGoogle Scholar
  28. 22.
    R. W. Boom, L. D. Roberts, and R. S. Livingston, Nucl. Instr. Methods 20:495 (1963).CrossRefGoogle Scholar
  29. 23.
    A. R. Kantrowitz and Z. J. J. Stekly,Appl. Phys. Letters 6:56 (1965).CrossRefGoogle Scholar
  30. 24.
    C. Laverick and G. Lobell, Rev. Sci. Instr. 36:825 (1965).CrossRefGoogle Scholar
  31. 25.
    R. W. Meyerhoff and B. H. Heise, J. Appl. Phys. 36:137 (1965).CrossRefGoogle Scholar
  32. 26.
    S. L. Wipf, Paper presented at Conference on the Physics of Type II Superconductors, Cleveland, Ohio, August 28–29, 1964.Google Scholar
  33. 27.
    M. S. Lubell and G. T. Mallick,Appl. Phys. Letters 4:206 (1964).CrossRefGoogle Scholar
  34. 28.
    C. H. Rosner, J. Appl. Phys. 36:1175 (1964).CrossRefGoogle Scholar
  35. 29.
    M. R. Beasley, W. A. Fietz, R. W. Rollins, J. Silcox, and W. W. Webb, Phys. Rev. 137:A1205 (1965).CrossRefGoogle Scholar
  36. 30.
    J. E. Evetts, A. M. Campbell, and D. Dew-Hughes, Phil. Mag. 10:339 (1964).CrossRefGoogle Scholar
  37. 31.
    C. J. Gorter, Physica, 31:407 (1965).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • M. S. Lubell
    • 1
  1. 1.Westinghouse Research LaboratoryPittsburghUSA

Personalised recommendations