A Study of Bubble Motion in Liquid Nitrogen

  • C. G. Fritz
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 11)


In liquid rocket propulsion systems helium gas is injected at the lower ends of the suction lines to locally subcool the LOX and at the same time mechanically break up any thermal stratification. Because helium will not condense when in contact wih LOX, it Is also used to initially pressurize the LOX tank and later, as the tank Is draining, acts as a piston or buffer between the LOX and hot oxygen gas.


Reynolds Number Test Section Drag Coefficient Froude Number Weber Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. L. Green, Hydro- and Aero-dynamics, Sir Issac Pitman and Co., Ltd., London (1938).Google Scholar
  2. 2.
    H. Lamb, Hydrodynamics, 6th ed, Dover Publications, Inc., New York (1945).Google Scholar
  3. 3.
    L. M. Milne-Thompson, Theoretical Hydrodynamics, The Macmillan Company, London (1933).Google Scholar
  4. 4.
    A. S. Ramsy, A Treatise on Hydrodynamics, Pari II, C. Bell and Sons, London (1947).Google Scholar
  5. 5.
    G. C. Stokes, Mathematical and Physical Papers, Vol. I, Cambridge University Press, London (1880).Google Scholar
  6. 6.
    H. S. Allen, Phil. Mag. 50:323 (1900).Google Scholar
  7. 7.
    J. V. Robinson, J. Phys. and Colloid Chem. 51:431 (1947).CrossRefGoogle Scholar
  8. 8.
    O. Miyagi, Phil. Mag. 50:112 (1925).Google Scholar
  9. 9.
    T. Bryn, Forsch. Gebiete Ingenieurin 4(1):27 (1933).CrossRefGoogle Scholar
  10. 10.
    M. P. O’Brien and J. E. Gosline, Ind. Eng, Chem. 27:1436 (1935).CrossRefGoogle Scholar
  11. 11.
    F. Kaissling, Forsch, Gebiete Ingenieurw. 14:30 (1943).CrossRefGoogle Scholar
  12. 12.
    E. P. Wiegner, “The Rate of Rise of Air Bubbles,” AECD-1983 (1948).Google Scholar
  13. 13.
    V. G. Levich, Zh. Eksperim. i Teor. Fiz. 19:18 (1949).Google Scholar
  14. 14.
    A. J. Gorodetskaya, Phys. Cham, USSR 23:71 (1949).Google Scholar
  15. 15.
    R. L. Datta, D. H. Napier, and D. M. Newitt, Trans. Inst. Chem. Engrs. (London) 28:3 (1950).Google Scholar
  16. 16.
    H. Verschoor, Trans. Inst. Chem. Engrs. (London) 28:42 (1950).Google Scholar
  17. 17.
    D. W. Van Krevelen and P. J. Hoftijzer, Chem. Eng. Progr. 46(1):29 (1950).Google Scholar
  18. 18.
    R. M. Davies and G. I. Taylor, Proc. Roy. Soc. A200:375 (1950).Google Scholar
  19. 19.
    B. Rosenberg, “The Drag and Shape of Air Bubbles Moving in Liquids,” Navy Department Report 727 (1950).Google Scholar
  20. 20.
    F. N. Peebles and H. J. Garber, Chem. Eng. Progr. 49:88 (February 1953).Google Scholar
  21. 21.
    H. L. Langhaar, Dimensional Analysis and Theory of Models, John Wiley and Sons, Inc., New York (1951).Google Scholar
  22. 22.
    C. E. Lapple and C. B. Shepherd, Ind. Eng. Chem. 32:605 (1940).CrossRefGoogle Scholar
  23. 23.
    V. J. Johnson (ed.), “A Compendium of the Properties of Materials at Low Temperature (Phase I), Part I, Properties of Fluid,” WADD Technical Report 60–56 (1960).Google Scholar
  24. 24.
    C. G. Fritz, “Study of Gas Bubble Dynamics Part 1,” Internal Note R-P & VE-P-64–5 (February 27, 1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • C. G. Fritz
    • 1
  1. 1.NASA George C. Marshall Space Flight CenterHuntsvilleUSA

Personalised recommendations