Heat Transfer Domains for Fluids in a Variable Gravity Field with Some Applications to Storage of Cryogens in Space

  • M. Adelberg
  • S. H. Schwartz
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 11)


A number of probiems exist which are peculiar to heat transfer analyses of cryogenic fluids in a reduced gravity environment. To facilitate such analyses, this paper presents the domains of applicability of a number of heat transfer relations. Most of the critical values of the important parameters are available in the literature, and these are summarized. In some cases the need for new criteria is recognized and attempts are made to develop them. Included in this category of new domain limits are the lower limit of the Rayleigh number for laminar-free convection and the critical times for transition from conduction to convection for flat plates in various positions and for both laminar and turbulent flow.


Heat Transfer Nusselt Number Natural Convection Rayleigh Number Boiling Heat Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Sparrow and J. L. Gregg, Trans. ASME 78:435 (1956).Google Scholar
  2. 2.
    E. R. G. Eckert and R. M. Drake, Heat and Mass Transfer, 2nd ed., McGraw-Hill Book Company, New York (1959).Google Scholar
  3. 3.
    E. R. G. Eckert and T. W. Jackson, “Analysis of Turbulent Free-Convection Boundary Layer on Fiat Plate,” NACA Report 1015 (1951).Google Scholar
  4. 4.
    F. H. Morse, “Turbulent Free Convection Over a Uniformly Heated Surface with Internal Heat Generation and a Non-Uniform Bulk Temperature,” LMSC-FM-42 (January 1962).Google Scholar
  5. 5.
    B. Gebhart, Heat Transfer, McGraw-Hill Book Company, New York (1961).Google Scholar
  6. 6.
    E. Schmidt and W. Beckman, Tech. Mech. u. Thermodynamics 1:341, 391 (1930).Google Scholar
  7. 7.
    . E. Y. Harper, J. H. Chin, S. E. Hurd, J. O. Donaldson, H. M. Satterlee, and L. W. Gallagher, “Analytical and Experimental Study of Liquid Orientation and Stratification in Standard and Reduced Gravity Fields,” Preliminary Report, Lockheed Missiles and Space Co., Contract NAS 8–11525, Marshall Space Flight Center (July 1964): see also Ref. 6.Google Scholar
  8. 8.
    W. M. Rohsenow and A. E. Bergles, Trans. ASME, J. Heat Transfer, Series C 86:365 (1964).CrossRefGoogle Scholar
  9. 9.
    J. E. Sherley, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 495.Google Scholar
  10. 10.
    R. W. Graham, R. C. Hendricks, and R. C. Ehlers, “Analytical and Experimental Study of Pool Heating of Liquid Hydrogen over a Range of Accelerations,” NASA TN-1883, Lewis Research Center, Cleveland, Ohio (February 1965).Google Scholar
  11. 11.
    C. R. Class, J. R. De Haan, M. Piccone, and R. B. Cost, “‘Pool Boiling Heat Transfer to a Cryogenic Liquid,” WADC Technical Report 58–528 (1958).Google Scholar
  12. 12.
    R. J. Richards, W. G. Steward, and R. B. Jacobs, “A Survey of the Literature on Heat Transfer from Solid Surfaces to Cryogenic Fluids,” NBS Tech. Note No. 122, Boulder, Colo. (October 1961).CrossRefGoogle Scholar
  13. 13.
    D. E. Drayer and K. D. Timmerhaus, in: Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 401.Google Scholar
  14. 14.
    R. N. Mulford, J. P. Nigon, J. G. Dash, and W. E. Keller, “Heat Exchange Between a Copper Surface and Liquid Hydrogen and Nitrogen,” LAMS-1443, AEC (May 21, 1952).Google Scholar
  15. 15.
    P. Roubeau, Proceedings of the Tenth International Congress of Refrigeration, Commission I, Copenhagen (1959), p. 49.Google Scholar
  16. 16.
    M. P. Malkov, A. G. Zeldovich, A B. Fradkov, and I. B. Danllou, Proceedings of the Second International Conference on the Peaceful Uses of Atomic Energy 4 (1953).Google Scholar
  17. 17.
    H. Merte and J. A. Clark, Trans. ASME, J. Heat Transfer, Series C 83:223 (1961).Google Scholar
  18. 18.
    J. D. Seader, W. S. Miller, and L. A. Kalvinskas, “Boiling Heat Transfer for Cryogenics,” NASA CR-243 (June 1965).Google Scholar
  19. 19.
    E. G. Brentari and R. V. Smith, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 325.Google Scholar
  20. 20.
    S. S. Kutateladze, Fundamentals of Heat Transfer, Edward Arnold Ltd., Academic Press, Inc., New York (1963).Google Scholar
  21. 21.
    M. Jacob, Heat Transfer, Vol I, John Wiley and Sons, Inc., New York (1950), p. 527.Google Scholar
  22. 22.
    T. von Karman, Z. Angew. Math. Mech. 1:233 (1921).CrossRefGoogle Scholar
  23. 23.
    N. Zuber and M. Tribus, “Further Remarks on the Stability of Boiling Heat Transfer,” Rep. 53–5, University of California, Los Angeles (1958).CrossRefGoogle Scholar
  24. 24.
    M. Usiskin and R. Siegel, Trans. ASME, J. Heat Transfer, Series C (August 1961).Google Scholar
  25. 25.
    S. H. Schwartz and M. Adelberg, “Some Thermal Aspects of a Contained Fluid in a Low Gravity Environment,” presented at the Symposium on Fluid Mechanics and Heat Transfer under Low Gravitational Conditions, at Lockheed Missiles and Space Company Research Laboratories, Palo Alto, California (June 24–25, 1965).Google Scholar
  26. 26.
    W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill Book Company, New York (1954).Google Scholar
  27. 27.
    W. J. King, Mech. Eng. 54:347 (1933).Google Scholar
  28. 28.
    F. Kreith, Principles of Heat Transfer, International Textbook Co., Scranton, Penn. (1958), p. 306.Google Scholar
  29. 29.
    R. Siegel, Tram. ASME, 80:347 (February 1958).Google Scholar
  30. 30.
    M. Fishenden and O. A. Saunders, An Introduction to Heat Transfer, Oxford (1950).Google Scholar
  31. 31.
    G. B. Wilkes and C. M. F. Peterson, Heating, Piping, and Air Conditioning 10:477 (July 1938).Google Scholar
  32. 32.
    S. H. Schwartz and M. Adelberg, “The Effect of Pressure on the Incipient Point for Nucleate Pool Boiling,” TN136 (to be published).Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • M. Adelberg
    • 1
  • S. H. Schwartz
    • 2
  1. 1.Sherman OaksUSA
  2. 2.Douglas Aircraft CompanySanta MonicaUSA

Personalised recommendations