Cooldown of Insulated Metal Tubes to Cryogenic Temperatures

  • J. P. Maddox
  • T. H. K. Frederking
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 11)

Abstract

Coatings of a poor thermal conductor on metallic components may shorten the lengthy cooldown process prior to operation of cryogenic equipment, as shown first by Cowley, Timson, and Sawdye [1]. Consequently, the operation and response of low-temperature systems may be improved by coating fluid-exposed surfaces of hardware (e.g., ducts, pumps). For instance, applications of Teflon coatings to cryopanels have been reported by Allen [2].

Keywords

Cryogenic Temperature Boiling Heat Transfer Vapor Film Sound Level Meter Teflon Tape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. W. Cowley, W. J. Timson, and J. A. Sawdye, in: Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 385.Google Scholar
  2. 2.
    L. D. Allen, in: Advances in Cryogenie Engineering, Vol. 11, Plenum Press, New York (1966), p. 547.Google Scholar
  3. 3.
    B. J. Stock, “Observations on Transition Boiling Heat Transfer Phenomena,” Argonne National Laboratory Rept. ANL-6175 (June 1960).Google Scholar
  4. 4.
    R. F. Gaertner, “Photographic Study of Nucleate Pool Boiling on a Horizontal Surface,” Trans. ASME, J. Heat Transfer, Series C 87:28 (1965).Google Scholar
  5. 5.
    T. H. K. Frederking and R. C. Chapman, “Optimization of Cool Down of Solids in Low Boiling Point Liquid,” presented at Intern. Inst, Refrig., Grenoble, France (June 9–11, 1965).Google Scholar
  6. 6.
    H. S. Carslaw and C. J. Jaeger, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford (1959), pp. 70,Google Scholar
  7. 6a.
    H. S. Carslaw and C. J. Jaeger, Conduction of Heat in Solids, 2nd ed., Clarendon Press, Oxford (1959), pp. 282.Google Scholar
  8. 7.
    T. H. K. Frederking and J. A. Clark, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 501.Google Scholar
  9. 8.
    T. R. Goodman, in: Advances in Heat Transfer, Vol. 1, J. P. Hartnett (ed.)., Academic Press Inc., New York (1964), p. 52.Google Scholar
  10. 9.
    P. D. Thomas and F. H. Morse, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 550.Google Scholar
  11. 10.
    J. D. Seader, W. S. Miller, and L. A. Kalvinskas, “Boiling Heat Transfer for Cryogenics,” Rocketdyne Div. of N.A.A. Rept. R-5598 (May 1964).Google Scholar
  12. 11.
    E. G. Brentari and R. V. Smith, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 325.Google Scholar
  13. 12.
    J. W. Westwater, A. J. Lowery, and F. S. Pramuk, Science 122:332 (1955).CrossRefGoogle Scholar
  14. 13.
    R. B. Scott, Cryogenic Engineering, D. van Nostrand & Co., Inc., Princeton, New Jersey (1959), p. 268.Google Scholar

Copyright information

© Springer Science+Business Media New York 1966

Authors and Affiliations

  • J. P. Maddox
    • 1
  • T. H. K. Frederking
    • 1
  1. 1.University of CaliforniaLos AngelesUSA

Personalised recommendations