Skip to main content

Fifty Years of Neutrino Physics: A Few Episodes

  • Chapter
Neutrino Physics and Astrophysics

Part of the book series: Ettore Majorana International Science Series ((EMISS,volume 12))

Abstract

On the occasion of the 70th birthday of Edoardo Amaldi, about two years ago, I was invited to give a review talk on Neutrino Physics at the International Assembly of physicists, the major part of which was certainly not composed of neutrino physicists. Then the talk was much simpler than today, since you are all professional “neutrinists”. Notice that I have only 30 minutes at my disposition (instead of 2 hours at the Amaldi Conference). I must avoid the danger of being trivial by telling you the a,b,c of your work. A way out of this difficulty, maybe, is to give a few recollections of such developments in neutrino physics which either are curious and at the same time very important (Pauli, Fermi) or about which I happen to be well informed for various reasons. Thus my talk will be entirely subjective (at a variance with the one I gave at the Amaldi celebration) and will be mainly dedicated to the young gene ration of neutrino investigators, who are well informed about today and yesterday developments, but not so well about old ones. I shall not talk about today problems, of course, since you are all here to discuss them during almost a week. By the way, most of you are used to thinking in terms of 105 – 106 neutrino events and forgot, if you knew it, that 16 years after the Pauli neutrino hypothesis (1930) neutrinos were still considered as undetectable particles, and, as you heard today, they were first revealed in the free state only 25 years after they had been invented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauli: letter (4 December 1930) to a meeting of physicists, among which Geiger and Meitner, taking place in Tübingen. The letter was conserved by Meitner and its content was discussed since 1930. The letter was widely published only after many years. (See, for example: Brown, Phys. Today, September, 1978).

    Google Scholar 

  2. Pauli, “Septieme Conseil de Physique Solvay 1933”, Gauthier-Villars, Paris (1934).

    Google Scholar 

  3. For accurate measurements in the reaction 37A+e37Cl+ν (K-capture) see: Rodeback, Allen, Phys. Rev., 86: 466 (1952). A striking picture of apparent non-conservation of momentum in the beta decay of He into Li and an electron by Csikay and Szaley appeared in Proc. of the Intern. Conf., Paris, Publ. Dunad (1959).

    Article  Google Scholar 

  4. See for reviews of the subject: Primakov and Rosen, Report on Progress in Physics, 22: 121 (1959); Fiorini, Proc. of the ν’77 Conf., Ed. Nauka, Moscow (1978). Neutrino-less double beta decay has not been observed and upper limits 10−3 − 10−4 for the lepton non-conserving relative amplitudes have been set for the double decays 48Ca→48Ti (Bardin et al.), 76Ge→76Se (Fiorini et al.), 82Se→82Kr (Cleveland et al.), 103Te→103Xe (Zdelenko et al.).

    Article  Google Scholar 

  5. The first measurements of the 3H beta spectrum were performed by means of proportional counters in 1949: Hanna, Pontecorvo, Phys. Rev., 75: 983 (1949)

    Article  Google Scholar 

  6. Curran et al., Phil. Mag., 40: 53 (1949). Then substantial improvements were obtained by using as a 3H source a few molecule thick layer and a magnetic spectrometer, by Bergkvist, CERN Report 69-7: 91 (1969)

    Google Scholar 

  7. Curran et al., Nucl. Phys. B39: 317 (1972). The last and best result is mνe ⩽ 35 eV (90% C. l.) (Tret’jakov et al., Proc. of the Int. Conf. on High Energy Phys., Tbilisi, Vol. II: 118 (1976)). Less accurate measurements have been performed by implanting 3H in a Si(Li) detector (Simpson, Proc. ν’79 Conf., Vol. 2: 208).

    Google Scholar 

  8. Pontecorvo, Phys. Rev., 72: 246 (1947)

    Article  Google Scholar 

  9. Puppi, Nuovo Cimento 5: 505, 1948

    Article  Google Scholar 

  10. Klein, Nature, 161: 897 (1948)

    Article  Google Scholar 

  11. Lee et al., Phys. Rev., 75: 905 (1949)

    Article  Google Scholar 

  12. Tiomno, Wheeler, Rev. Mod. Phys., 21: 144 (1949).

    Article  Google Scholar 

  13. These experiments gave upper limits as bad as \( {\text{R}}\,{\text{ = }}\frac{{\mu \to e\gamma }} {{\mu \to all}}\, \leq 10\% . \) Values of R were greatly improved in a number of experiments, the bsst of which, performed with a gamma hodoscope and a magnetic spectrometer, gives a limit as good as R→2·10−10 at the 90% c. l. (Anderson, Hofstadter et al., Proc. of the Tokyo International Conference, (1978)). For other similar processes the following limits are obtained \( {{R'}}\,{\text{ = }}\frac{{\mu \to 3e}} {{\mu \to all}}\, \leq 2.10^{ - 9} \) (Korenchenko et al., Proc. of the ν’77 Conference) and \( {{R'' = }}\frac{{\mu ^{\text{ - }} + ^{32} {\text{S}} \to {\text{e}}^{\text{ - }} + ^{32} {\text{S}}}} {{\mu ^{\text{ - }} + ^{32} {\text{S}} \to \nu _\mu + \ldots }} \leq 1.5 \cdot 10^{ - 10} \) (Badertscher et al., Phys. Rev. Lett. 39: 1383 (1977).

    Google Scholar 

  14. Wick, Wightman and Wigner, Phys. Rev. 88: 101 (1952).

    Article  Google Scholar 

  15. Bethe, Phys. Rev. 55: 434 (1939).

    Article  Google Scholar 

  16. Gamow and Schonberg, Phys. Rev. 59: 539 (1941).

    Article  Google Scholar 

  17. Pontecorvo, National Res. Council Canada, Rep. PD 205 (1946)

    Google Scholar 

  18. Pontecorvo, Helv. Phys. Acta, Suppl. 3: 97 (1950).

    Google Scholar 

  19. Gamow, Phys. Rev. 70: 505 (1948).

    Article  Google Scholar 

  20. Fowler, Appl. J. 127: 551 (1958).

    Google Scholar 

  21. Pontecorvo, JETP 36: 1615 (1959).

    Google Scholar 

  22. Markov, Proc. of Int. Conf. on High Energy Phys., Rochester p. 578 (1960).

    Google Scholar 

  23. Greisen, Proc. Int. Conf. on Instrument High Energy Phys., Interscience Publ. p. 209 (1960).

    Google Scholar 

  24. Pontecorvo and Smorodinsky, JETP 41: 239 (1961).

    Google Scholar 

  25. Zeldovich and Smorodinsky, JETP 41: 907 (1961).

    Google Scholar 

  26. Pontecorvo, Phys. Lett. 1: 287 (1963).

    Google Scholar 

  27. Reines et al., Proc. of the ν’72 Conf. 2: 199.

    Google Scholar 

  28. Krishnasvami et al., Proc. Roy. Soc. A323: 489 (1971); Osborne et al., Proc. of the ν’72 Conf. 2: 223

    Google Scholar 

  29. Fowler and Hoyle, The University of Chicago Press, Chicago-London (1965).

    Google Scholar 

  30. Colgate and White, Astrophys. J. 143: 626 (1966).

    Article  Google Scholar 

  31. Zeldovich, Letters JETP 1: 40 (1965).

    Google Scholar 

  32. Domagatsky and Zatsepin, Proc. 9th Int. Conf. on Cosmic Rays 2: 1030 (1965).

    Google Scholar 

  33. Penzias and Wilson, Appl. J. 142: 419 (1965).

    Google Scholar 

  34. Dicke et al., Appl. J. 142: 414 (1965).

    Google Scholar 

  35. Zeldovich and Novikov, Lett. JETP 6: 772 (1967).

    Google Scholar 

  36. Weinberg, Gravitation and cosmology, John Wiley Inc., New York (1972).

    Google Scholar 

  37. Gershtein and Zeldovich, Lett, to JETP 4: 174 (1966).

    Google Scholar 

  38. For cosmological hounds on the mass of neutral leptons see: Lee and Weinherg, Phys. Rev. Lett. 39: 165 (1977)

    Article  Google Scholar 

  39. Dolgav, Visotsky and Zeldovich, Lett. JETP 26: 200 (1977); For cosmological bounds on the number of massless neutrino see: Schvartsman, Lett. JETP 9: 315 (1969)

    Google Scholar 

  40. Steigman, Schram and Gunn, Phys. Lett. 66B: 202 (1977). See also for other limits on neutrino properties from astrophysics considerations: Bernstein, Riderman and Feinberg, Phys. Rev.,.132 1227 (1963)

    Google Scholar 

  41. Berg, Marciano and Ruderman, Phys. Rev. D17: 1395 (1978).

    Google Scholar 

  42. Pontecorvo, JETP 53: 1717 (1967); 13: 281 (1971).

    Google Scholar 

  43. Gribov and Pontecorvo, Phys. Lett. 28B:493 (1969).

    Google Scholar 

  44. Bilenky and Pontecorvo, Phys. Lett. 61B: 248 (1976)

    Google Scholar 

  45. Bilenky and Pontecorvo, Lett. Nuovo Cimento 17: 569 (1976)

    Article  Google Scholar 

  46. Bilenky and Pontecorvo, Comments on nuclear and particle phys. 7: 149 (1977)

    Google Scholar 

  47. Bilenky and Pontecorvo, Phys. Rep. 41: 226 (1978).

    Article  Google Scholar 

  48. Bahcall, Proc. of the ν’72 Conference 1: 29.

    Google Scholar 

  49. Berezinsky and Zatsepin, Sov. Phys. Usp. 20: 361 (1977).

    Article  Google Scholar 

  50. Gershtein et al. Proc. of the ν’77 Conf. 1: 106. See also Sutherland et al. Phys. Rev. D13: 2700 (1976); Pethick, Proc. of the ν’79 Conf. 1: 78 Bergen, Norway.

    Google Scholar 

  51. Chudakov et al. Proc. of the ν’77 Conf. 1: 155.

    Google Scholar 

  52. Dolgoshein et al. Proc. of the ν’77 Conf. 2: 341.

    Google Scholar 

  53. Sulak et al. Proc. of the ν’77 Conf. 2: 350.

    Google Scholar 

  54. Domogatsky et al. Proc. of the ν’77 Conf. 1: 115.

    Google Scholar 

  55. Davis et al. Proc. of the ν’78 Conf. p. 53. The measured rate can be compared with the theoretical rate, which is about twice larger. At this time the computed expected rate is given by Bahcall in: 40 years of stellar energy, Bethe Symposium, Stony Brook, N.Y. (1979).

    Google Scholar 

  56. Lande et al. Proc. of the ν’78 Conf. p. 887.

    Google Scholar 

  57. Zatsepin, Proc. of the ν’78 Conf. p. 881.

    Google Scholar 

  58. See for example: Learned, Proc. of the ν’78 Conf. p. 895.

    Google Scholar 

  59. Bethe and Peierls, Nature 133: 532 (1934).

    Article  Google Scholar 

  60. Fermi, Nuovo Cimento 1: 11 (1934).

    Google Scholar 

  61. Reines and Cowan, Phys. Rev. 98: 492 (1953); 113: 273 (1959).

    Article  Google Scholar 

  62. Danby et al. Proc. High Energy Conf. at CERN p. 809 (1962).

    Google Scholar 

  63. Vasilevsky et al. Phys. Lett. 1: 345 (1962).

    Article  Google Scholar 

  64. Kobzarev and Okun, JETP 41: 1205 (1961).

    Google Scholar 

  65. Kirkwood, Hanna and Pontecorvo, Phys. Rev. 75: 982 (1949).

    Article  Google Scholar 

  66. Davis, Phys. Rev. 97: 766 (1955).

    Article  Google Scholar 

  67. Pontecorvo, JETP 33: 549 (1957).

    Google Scholar 

  68. Pontecorvo, JETP 37: 1751 (1959).

    Google Scholar 

  69. Nguyen Van Hieu and Pontecorvo, JETP Lett. 7: 137 (1968).

    Google Scholar 

  70. Pontecorvo and Ryndin, Proc. Kiev Int. High Energy Phys. Conf. p. 233 (1959).

    Google Scholar 

  71. Bludman, Nuovo Cimento 9: 433 (1958).

    Article  Google Scholar 

  72. Zeldovich, JETP 36: 964 (1959)

    Google Scholar 

  73. Bouchiat and Bouchiat, Phys. Lett. 48B: 111 (1974).

    Google Scholar 

  74. Barkov and Zolotarev, Proc. of the ν’78 Conf. p. 423.

    Google Scholar 

  75. Prescott et al. Phys. Lett. 77B: 347 (1978).

    Google Scholar 

  76. See for example: Conversi, Int. Conf. of the Europ. Phys. Soc., Geneva (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Pontecorvo, B. (1982). Fifty Years of Neutrino Physics: A Few Episodes. In: Fiorini, E. (eds) Neutrino Physics and Astrophysics. Ettore Majorana International Science Series, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0519-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0519-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0521-8

  • Online ISBN: 978-1-4757-0519-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics