Skip to main content

The Thermodynamic Properties of Deuterium

  • Conference paper
  • 312 Accesses

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 13))

Abstract

The recent use of deuterium in bubble chambers and Yarious experimental physics programs has prompted a literature survey of existing data and the compilation of useful thermodynamic properties for this fluid. The compilation of thermodynamic properties for a fluid generally involves the summarization and correlation of large quantities of sometimes isolated information, both theoretical and experimental, into a composite form. This has been accomplished in the present study by the development within the precision of the data, of an equation of state that represents the available P-ρ-T data for deuterium and a vapor pressure equation that fits the data of this fluid from the triple point to the critical point. Consistency of the equation of state has been checked by making comparisons of the calculated second virial coefficients with available experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Prydz, M.S. Thesis, University of Colorado, Boulder, Colorado (1967).

    Google Scholar 

  2. R. Prydz, NBS Rept No. 9276 (Apr. 1967).

    Google Scholar 

  3. A. Michels and M. Goudeket, Physica, 8(3):353 (1941).

    Article  Google Scholar 

  4. A. Michels, W. DeGraafir, T. Wassenaar, T. M. H. Levelt, and P. Louwerse, Physica, 25:25 (1959).

    Article  Google Scholar 

  5. H. G. David and S. D. Hamann, Trans, Faraday Soc., 49:711 (1953).

    Article  Google Scholar 

  6. A. S. Friedman. M. Trzeciak, and H. L. Johnston, J. Am. Chem. Soc., 76:1552 (1954).

    Article  Google Scholar 

  7. H. J. Hoge and F. G. Brickwedde, NBS J. Res., 22:351 (1939).

    Google Scholar 

  8. H. J. Hoge and J. W. Lassiter, NBS J. Res., 47(2):75 (1951).

    Google Scholar 

  9. J. J. M. Beenakker, F. H. Varekamp, and A. van Itterbeek, Physica, 25:9 (1959).

    Article  Google Scholar 

  10. E. Barthóiome, Z. physik. Chem., 33:387 (1936).

    Google Scholar 

  11. K. Clusius and E. Barthóiome, Z. phvsik. Chem., B30:237 (1935).

    Google Scholar 

  12. E. C. Kerr, J. Am. Chem. Soc., 74:824 (1952).

    Article  Google Scholar 

  13. E. C. Kerr, private communication (June 1966).

    Google Scholar 

  14. G. N. Lewis and W. T. Hanson. J. Am. Chem. Soc., 56:1687 (1934).

    Article  Google Scholar 

  15. E. R. Griily, J. Am. Chem. Soc., 73:843 (1951).

    Article  Google Scholar 

  16. R. B. Scott, F. G. Brickwedde, H. C. Urey, and M. H. Wahl, J. Chem. Phys., 2:454 (1934).

    Article  Google Scholar 

  17. F. G. Brickwedde, R. B. Scott, and H. S. Taylor, NBS J. Res., 15:463 (1935); RP 841.

    Google Scholar 

  18. J. G. Hust and R. B. Stewart, NBS Rept. No. 8753 (Feb. 1965).

    Google Scholar 

  19. A. S. Friedman, D. White, and H. L. Johnston, J. Am. Chem. Soc., 73:1310 (1951).

    Article  Google Scholar 

  20. H. J. Hoge and R. D. Arnold, NBS J. Res., 47:63 (1951).

    Google Scholar 

  21. T. R. Strobridge, NBS Tech. Note No. 129 (Jan. 1962).

    Google Scholar 

  22. R. D. McCarty and R. B. Stewart in: Advances in Thermo physical Properties ai Extreme Temperatures and Pressures, ASME, New York (1965), p. 84.

    Google Scholar 

  23. R. B. Stewart, Ph.D. Dissertation. University of Iowa, Iowa City, Iowa (June 1966).

    Google Scholar 

  24. H. M. Roder and R. D. Goodwin, NBS Tech. Note No. 130 (1961).

    Google Scholar 

  25. J. G. Hust and R. B. Stewart, ASHRAE J., 8(2):64 (1966).

    Google Scholar 

  26. J. J. M. Beenakker and F. H. Varekamp, Bull. IIR Annexe 1956–2, 189 (1956).

    Google Scholar 

  27. K. Schäfer, Z. physik. Chem., B36:85 (1937).

    Google Scholar 

  28. W. DeGraaf, Ph.D. Dissertation, Amsterdam University, Netherlands (1960).

    Google Scholar 

  29. H. M. Roder, L. A. Weber, and R. D. Goodwin, NBS Monograph 94 (Aug. 1965).

    Google Scholar 

  30. J. W. Dean and D. B. Mann, NBS Tech. Note No. 227 (Feb. 1965).

    Google Scholar 

  31. W. Koeppe, in:Progress in Refrigeration Science and Technology, Vol. 1, Pergamon Press, London (1960), p. 156.

    Google Scholar 

  32. W. Koeppe, Kältetechnik, 14(12):399 (1962).

    Google Scholar 

  33. L. Haar, A. S. Friedman, and C. W. Beckett, NBS Monograph 20 (May 1961).

    Google Scholar 

  34. J. G. Hust and A. L. Gosrnan, in: Advances in Cryogenic Engineering. Vol. 9, Flenum Fress, New York (1964), p. 227.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this paper

Cite this paper

Prydz, R., Timmerhaus, K.D., Stewart, R.B. (1995). The Thermodynamic Properties of Deuterium. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0516-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0516-4_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0518-8

  • Online ISBN: 978-1-4757-0516-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics