Skip to main content

Molecular Beam Studies of Cryopumping

  • Conference paper
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 13))

  • 301 Accesses

Abstract

During the past ten years, cryopumping has been widely employed in the production of the vacuum environment, and investigators [1–8] have measured the capture coefficient of a cryosurface for varions gases. However, widely varying values of the capture coefficients have been reported [1,5,7,8].

Work sponsored by Arnold Engineering Development Center, Air Force Systems Command, under Contract No. AF 40(600)-1200 with ARO, Inc. Further reproduction is authorized to satisfy the needs of the U.S. Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. S. J. Wang, J. A. Collins Jr., and J. D. Haygood, in: Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 44.

    Google Scholar 

  2. E. S. J. Wang, J. A. Collins Jr., and J. D. Haygood, in: Advances in Cryogenic Engineering, Vol. 8, Plenum Press, New York (1963), p. 73.

    Google Scholar 

  3. J. P. Dawson, “Cryopumping Capture Coefficients of Two Nitrogen-Oxygen Gas Mixtures,” AEDC-TDR-64–150 (AD 603623) (1964).

    Google Scholar 

  4. R. F. Brown, “Cryopumping of Nitrous Oxide.” AEDC-TDR-63–267 (AD 431229) (1963).

    Google Scholar 

  5. C. B. Barnes and C. B. Hood, in: Advances in Cryogenic Engineering, Vol. 7, Plenum Press, New York (1962), p. 64.

    Google Scholar 

  6. J. N. Chubb and I. E. Pollard, Vacuum, 15(10):491 (1965).

    Article  Google Scholar 

  7. R. M. Freeman, “In-Chamber Vacuum Gage Calibration Method and Its Application to Cryopumping Measurements.” AEDC-TR-66–234 (AD 645509) (1966).

    Google Scholar 

  8. T. L. Moody, “Capture Coefficient of 300° K CO2 on a 77°K Surface as Measured by the Rotating Gage Technique,” AEDC-TR-66–231 (AD 645510) (1966).

    Google Scholar 

  9. J. P. Dawson and J. D. Haygood, “Temperature Effects on the Capture Coefficient of CO2.” AEDC-TDR-63–251 (AD 428497) (1963).

    Google Scholar 

  10. J. P. Dawson and J. D. Haygood, Cryogenics, 5:57 (1965).

    Article  Google Scholar 

  11. R. E. Stickney, “A Discussion of Energy and Momentum Transfer in Gas-Surface Interactions.” AEDC-TR-66–13 (AD 630522) (1966).

    Google Scholar 

  12. J. D. Haygood and J. P. Dawsoo, “Considerations in Measurement of Cryopumping Capture Coefficients.” AEDC-TR-65–68 (AD 461132) (1965).

    Google Scholar 

  13. R. F. Brown and J. H. Heald Jr., in: Rarefied Gas Dynamics, Fifth Symposium, Vol. II, C. L. Brundin (ed.). Academic Press, New York (1962), p. 1407.

    Google Scholar 

  14. R. F. Brown and J. H. Heald Jr., “Description and Performance of a Molecular Beam Chamber Used for Cryopumping and Adsorption Pumping Studies.” AEDC-TR-66–135 (AD 641388) (1966).

    Google Scholar 

  15. J. H. Heald Jr., “The Performance of a Mass Spectrometric Modulated Beam Detector for Gas-Surface Interaction Measurements.” AEDC-TR-67–35 (1967).

    Google Scholar 

  16. R. P. Caren, A. S. Tilcrest, and C. A. Zierman, in: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 457.

    Google Scholar 

  17. E. H. Kennard, Kinetic Theory of Gases, McGraw-Hill Book Company, Inc., New York (1938).

    Google Scholar 

  18. M. Knudsen, Annalm Physik, 48:1113 (1915).

    Google Scholar 

  19. R. W. Wood, Phil. Mag. 30:300 (1915)

    Article  Google Scholar 

  20. R. W. Wood, Phil. Mag. 32:314 (1916).

    Google Scholar 

  21. J. P. Taylor, Phys. Rev. 35:375 (1930).

    Article  Google Scholar 

  22. S. Datz, G. E. Moore, and E. H. Taylor, in: Rarefied Gas Dynamics; Vol. 1, J. A. Laurmann (ed.), Academic Press, New York (1963), p. 347.

    Google Scholar 

  23. J. J. Hinchen and E. F. Shepherd, Rarefied Gas Dynamics, Fifth Symposium, Vol. I, C. L. Brundin (ed.), Academic Press, New York (1962), p. 239.

    Google Scholar 

  24. E. L. Knuth, “Second Status Report on Development and Application of an Intermediate-Energy High-Intensity Molecular Beam.” UCLA Report No. 66–19 (Apr. 1966).

    Google Scholar 

  25. J. P. Hirth and G. M. Pound, Condensation and Evaporation, MacMillan Company, New York (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this paper

Cite this paper

Brown, R.F., Heald, J.H. (1995). Molecular Beam Studies of Cryopumping. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0516-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0516-4_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0518-8

  • Online ISBN: 978-1-4757-0516-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics