Skip to main content

Induction and Regulation of Contact Hypersensitivity in Syrian Hamsters

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 134))

Abstract

Syrian hamsters were introduced into experimental biology more than 50 years ago when it was found that they were particularly useful for the study of certain parasitic diseases (1). Within a relatively short period of time, their usefulness as experimental subjects was extended into several seemingly unrelated fields. They came to be used extensively for the study of experimental neoplasms (2), virus infections (3), and transplantation immunology (4). After the first 20 years of experience, the hamster came to be regarded as a relatively unique experimental subject because of certain putative aberrations: 1. hamsters reject skin allografts poorly or not at all (4); 2. hamsters are unusually susceptible to induction of tumors with a variety of oncogenic agents (2); 3. hamsters are highly susceptible to infection with viruses from many different species (3). Over the last two decades immunologists have learned that rejection of allografts, resistance to viral infection, and resistance to tumor induction are properties of the immune response that are presided over by the thymus and its cellular progeny. Because of the paramount role played by the thymus-dependent system in these various immune reactivities, it seemed reasonable to question the nature and extent of thymic function in the Syrian hamster. Surprisingly little is known about the T-cell system in this species. It was discovered more than 15 years ago that the ontogenetic maturation of the thymus as studied histologically is delayed (5). Evidence in support of this idea includes the facts that: 1. induction of neonatal transplantation tolerance can be achieved in hamsters up to a week following birth (4); 2. seeding of peripheral lymphoid organs with lymphocytes labeled intrathymically is delayed following birth compared to mice and rats (6); and 3. thymectomy performed as late as four weeks after birth results in a progressive wasting syndrome in hamsters resembling that following neonatal thymectomy in mice and rats (5,7). More recently, it has been found that hamsters fail to regulate certain alloimmune reactions thought to be governed by functional subsets of T lymphocytes in mice and other species. For example, hamsters fail to suppress graft-versus-host reactions in vivo following specific alloimmunization (8), and they do not develop suppressor cells in mixed lymphocyte cultures designed to delineate a putative allogeneic T-cell suppressor (9). In response to alloimmunization in vivo or in vitro, hamster lymphoid cells fail to assume significant cytotoxic activity as measured in vitro (10). Moreover, there is evidence that hamsters fail to develop cytotoxic T cells in response to acute virus infection (11).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, S.; Theodor, O. Proc R Soc Lond [Biol] 108 (1931) 447.

    Article  Google Scholar 

  2. Trentin, J. Fed Proc 37 (1978) 2084.

    PubMed  CAS  Google Scholar 

  3. Toolan, H. Fed Proc 37 (1978) 2065.

    PubMed  CAS  Google Scholar 

  4. Billingham, R.E. Fed Proc 37 (1978) 2024.

    PubMed  CAS  Google Scholar 

  5. Sherman, J. et al. Blood 23 (1964) 375.

    PubMed  CAS  Google Scholar 

  6. Linna, T.J. Blood 31 (1968) 727.

    PubMed  CAS  Google Scholar 

  7. Adner, M. et al. Blood 25 (1965) 511.

    PubMed  CAS  Google Scholar 

  8. Lause, D.; Streilein, J.W. Transplantation 25 (1977) 211.

    Article  Google Scholar 

  9. Lause, D.; Streilein, J.W. Transplantation 26 (1978) 80.

    Article  PubMed  CAS  Google Scholar 

  10. Duncan, W.; Streilein, J.W. J Immunol 118 (1977) 832.

    PubMed  CAS  Google Scholar 

  11. Nelles, M.; Streilein, J.W. Immunogenetics (1980) in press.

    Google Scholar 

  12. Streilein, J.W. J Immunol 124 (1980) 577.

    PubMed  CAS  Google Scholar 

  13. Benacerraf, B.; Unanue, E.R. Textbook of Immunology. Williams and Wilkins, Baltimore (1979).

    Google Scholar 

  14. Duncan, W.; Streilein, J.W. Transplantation 25 (1978) 12.

    Article  PubMed  CAS  Google Scholar 

  15. Duncan, W.; Streilein, J.W. Transplantation 25 (1978) 17.

    Article  PubMed  CAS  Google Scholar 

  16. Toews, G. et al. J Immunol 124 (1980) 445.

    PubMed  CAS  Google Scholar 

  17. Julius, M. et al. Eur J Immunol 3 (1973) 654.

    Article  Google Scholar 

  18. Macher, E.; Chase, M. J Exp Med 129 (1969) 103.

    Article  PubMed  CAS  Google Scholar 

  19. Vadas, M. et al. Immunogenetics 4 (1977) 137.

    Article  Google Scholar 

  20. Rowden, R. et al. Immunogenetics 7 (1978) 465.

    Article  PubMed  CAS  Google Scholar 

  21. Stingl, G. et al. J Immunol 120 (1978) 570.

    PubMed  CAS  Google Scholar 

  22. Stingl, G. et al. Nature 268 (1977) 245.

    Article  PubMed  CAS  Google Scholar 

  23. Stingl, G. et al. J Invest Dermatol 71 (1978) 59.

    Article  PubMed  CAS  Google Scholar 

  24. Bergstresser, P. et al. J Invest Dermatol 74 (1980) 77.

    Article  PubMed  CAS  Google Scholar 

  25. Chase, M. Proc Soc Exp Biol Med 61 (1946) 257.

    PubMed  CAS  Google Scholar 

  26. Scott, D.; Long, C. J Exp Med 144 (1976) 1369.

    Article  PubMed  CAS  Google Scholar 

  27. Polak, L. et al. Immunology 25 (1973) 451.

    PubMed  CAS  Google Scholar 

  28. Miller, S. et al. J Exp Med 147 (1978) 788.

    Article  PubMed  CAS  Google Scholar 

  29. Phanuphak, P. et al. J Immunol 112 (1974) 115.

    PubMed  CAS  Google Scholar 

  30. Miller, S.; Claman, H. J Immunol 117 (1976) 1519.

    PubMed  CAS  Google Scholar 

  31. Singh, S.; Tevethia, S. Proc Soc Exp Biol Med 142 (1973) 433.

    Google Scholar 

  32. Streilein, J.W. et al. Transplant Proc 9 (1977) 1229.

    PubMed  CAS  Google Scholar 

  33. Sy, M-S. et al. J Exp Med 149 (1979) 1197.

    Article  PubMed  CAS  Google Scholar 

  34. Sy, M-S. et al. J Exp Med 151 (1980) 896.

    Article  PubMed  CAS  Google Scholar 

  35. Streilein, J.W. J Exp Med 135 (1972) 567.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Wayne Streilein, J., Witte, P., Burnham, K., Bergstresser, P.R. (1981). Induction and Regulation of Contact Hypersensitivity in Syrian Hamsters. In: Wayne Streilein, J., Hart, D.A., Stein-Streilein, J., Duncan, W.R., Billingham, R.E. (eds) Hamster Immune Responses in Infectious and Oncologic Diseases. Advances in Experimental Medicine and Biology, vol 134. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0495-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0495-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0497-6

  • Online ISBN: 978-1-4757-0495-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics