Skip to main content

Piezoelectric Transducer Materials and Techniques for Ultrasonic Devices Operating above 100 MHz

  • Chapter
Ultrasonic Transducer Materials

Part of the book series: Ultrasonic Technology ((ULTE))

Abstract

In the field of ultrasonics, the frequency range above 100 MHz was until a few years ago largely the province of research scientists concerned with studies of acoustic losses in solids. However, this frequency range has since become important for engineers concerned with certain ultrasonic devices such as dispersive and nondispersive ultrasonic delay lines, ultrasonic light deflectors, and ultrasonic light modulation devices. There are already in existence practical ultrasonic delay lines(1) for the storage of digital data signals at bit rates as high as 100 Mbits/sec. Similarly, light modulators(2) and light deflectors(3,4) operating at frequencies of several hundred MHz have been built and light modulators, light deflectors, and delay lines requiring total 3 dB bandwidths of several hundred MHz are within the reach of existing technological capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. K. Sittig and H. D. Cook, “A method for preparing and bonding ultrasonic transducers used in high-frequency digital delay lines,” Proc. IEEE 56, 1375–1376 (1968).

    Article  Google Scholar 

  2. A. H. Meitzler, “Advances in the use of ferroelectric materials as high-frequency piezoelectric transducers,” paper presented at IEEE-CUA Symposium on Applications of Ferroelectrics, Washington, D.C., October 10–11, 1968.

    Google Scholar 

  3. D. Maydan, “Acoustooptical pulse modulators,” paper presented at 1969 Conference on Laser Engineering and Applications, Washington, D.C., May 26–28, 1969.

    Google Scholar 

  4. D. A. Pinnow, “A solid-state acoustooptic light deflector,” paper presented at 1969 Conference on Laser Engineering and Applications, Washington, D.C., May, 1969.

    Google Scholar 

  5. W. P. Mason, Electromechanical Transducers and Wave Filters, D. Van Nostrand Co., Inc., New York (1942, 1948), 2nd Ed., pp. 399–404.

    Google Scholar 

  6. J. E. May Jr., “Characteristics of delay lines using quartz and barium titanate transducers,”J.Acous. Soc. Am. 26, 347–355 (1954).

    Article  Google Scholar 

  7. H. J. McSkimin, “Transducer design for ultrasonic delay lines,”J.Acous. Soc. Am. 27, 302–309 (1955).

    Article  Google Scholar 

  8. W. F. Konig, L. B. Lambert, and D. L. Schilling, “The bandwidth, insertion loss, and reflection coefficient of ultrasonic delay lines for backing materials and finite thickness bonds,” IRE International Convention Record 9, pt. 6, 285–295 (1961).

    Google Scholar 

  9. M. Onoe and A. H. Meitzler, “Effect of high electromechanical coupling on characteristics of piezoelectric transducers,” Paper N44, Fourth International Congress on Acoustics, August 21–28, 1962.

    Google Scholar 

  10. C. F. Brockelsby, J. S. Palfreeman, and R. W. Gibson, Ultrasonic Delay Lines, Iliffe Book Ltd., London (1963).

    Google Scholar 

  11. E. K. Sittig, “Transmission parameters of thickness-driven piezoelectric transducers arranged in multilayer configurations,” IEEE Trans. on Sonics and Ultrasonics SU-14, 167–174 (1967).

    Article  Google Scholar 

  12. A. J. Bahr and Ian N. Court, “Determination of the electromechanical coupling coefficient of thin-film cadmium sulfide,”J.Appl. Phys. 39, 2863–2868 (1968).

    Article  CAS  Google Scholar 

  13. E. K. Sittig, “Effects of bonding and electrode layers on the transmission parameters of piezoelectric transducers used in ultrasonic delay lines,” IEEE Trans. on Sonics and Ultrasonics SU-16, 2–10 (1969).

    Article  Google Scholar 

  14. A. H. Meitzler and E. K. Sittig, “Characterization of piezoelectric transducers used in ultrasonic devices operating above 0.1 GHz,”J.Appl. Phys., 40, 4341–4352 (1969).

    Article  CAS  Google Scholar 

  15. E. K. Sittig, “High-speed ultrasonic digital delay line design: a restatement of some basic considerations,” Proc. IEEE 56, 1194–1202 (1968).

    Article  Google Scholar 

  16. N. F. Foster, G. A. Coquin, G. A. Rozgonyi, and F. A. Vannatta, “Cadmium sulfide and zinc oxide thin-film transducers,” IEEE Trans. on Sonics and Ultrasonics SU-15, 28–41 (1968).

    Article  Google Scholar 

  17. D. Berlincourt, “Delay line transducer materials,” 1967 IEEE International Convention Record, Part 11, 61–68 (1967).

    Google Scholar 

  18. A. W. Warner and A. H. Meitzler, “Performance of bonded single-crystal LiNbO3 and LiGaO2 as ultrasonic transducers operating above 100 MHz,” Proc. IEEE 56, 1376–1377 (1968).

    Article  Google Scholar 

  19. E. K. Sittig, A. W. Warner and H. D. Cook, “Bonded piezoelectric transducers for frequencies beyond 100 MHz,” Ultrasonics 7, 108–112 (1969).

    Article  CAS  Google Scholar 

  20. J. de Klerk and E. F. Kelley, “Coherent phonon genration in the gigacycle range via insulating cadmium sulfide films,” Appl. Phys. Letters 5 (1964).

    Google Scholar 

  21. N. F. Foster, “Ultrahigh frequency cadmium sulfide transducers,” IEEE Trans. on Sonics and Ultrasonics SU-11, 63–68 (1964).

    Google Scholar 

  22. N. F. Foster, “Piezoelectric and piezoresistive films,” in Handbook of Thin Film Technology, McGraw-Hill, New York (1970), Chap. 15.

    Google Scholar 

  23. A. R. Hutson, J. H. McFee, and D. L. White, “Ultrasonic amplification in CdS,” Phys. Rev. Letters 7, 237–239 (1961).

    Article  CAS  Google Scholar 

  24. D. L. White, “Amplification of ultrasonic waves in piezoelectric semiconductors,” J. Appl. Phys. 33, 2547–2554 (1962).

    Article  Google Scholar 

  25. D. L. White, “Depeltion layer transducer—a new high-frequency ultrasonic transducer,” 1961 IRE International Convention Record, pt. 6, 9, 304–309 (1961).

    Google Scholar 

  26. D. L. White, in Physical Acoustics (W. P. Mason, ed.), Vol. I, Part B, Academic Press Inc., New York (1964), pp. 321–352.

    Google Scholar 

  27. N. F. Foster, “Diffusion layer ultrasonic transducers,”J.Appl. Phys. 34, 990–991 (1963).

    Article  CAS  Google Scholar 

  28. F. S. Hickernell and D. E. Allen, “A GaAs diffusion layer transducer delay line,” Proc. IEEE 53, 1735 (1965).

    Article  Google Scholar 

  29. N. Chubachi, H. Aoki, T. Seki, M. Wada, and Y. Kikuchi, CdSe diffusion layer transducer, Acoustical Society of Japan (May 1966).

    Google Scholar 

  30. Y. Kikuchi, N. Chubachi, and H. Sasaki, Zinc oxide diffusion layer transducer, Acoustical Society of Japan (November 1966).

    Google Scholar 

  31. F. S. Hickernell, “Diffusion layer transduction in semiconducting zinc oxide,” Paper G3 presented at IEEE Ultrasonics Symposium, Vancouver, Canada, October 4–6, 1967.

    Google Scholar 

  32. F. S. Hickernell, “Piezoelectric semiconductor acoustic delay lines,” IEEE Trans. on Microwave Theory and Techniques MTT-17, 957–963 (1969).

    Google Scholar 

  33. R. A. Laudise, E. D. Kolb, and A. J. Caporaso, “Properties of lithium-doped hydrothermally-grown single crystals of zinc oxide”,J.Am. Ceramics Soc. 48, 342 (1965).

    Article  Google Scholar 

  34. H. Jaffe and D. Berlincourt, “Piezoelectric transducer materials”, Proc. IEEE 53, 1372–1386(1965).

    Article  Google Scholar 

  35. C. Solbrig, “Piezoelectric measurements on zinc oxide crystals,” Z. Phys. 184, 293–298 (1965).

    Article  CAS  Google Scholar 

  36. D. F. Crisler, J. J. Cupal, and A. R. Moore, “Dielectric piezoelectric and electromechanical coupling constants of zinc-oxide crystals,” Proc. IEEE 56, 225–226 (1968).

    Article  CAS  Google Scholar 

  37. R. T. Smith, “Temperature dependence of the electromechanical constants of Lidoped ZnO,” paper presented at Acous. Soc. Am. 77th Meeting, Philadelphia, Penn., April 8–11, 1969.

    Google Scholar 

  38. J. T. Krause and W. R. Northover, U.S. Patent No. 3,413,187, “Glass bonding medium for ultrasonic devices,” Nov. 26, 1968.

    Google Scholar 

  39. F. I. Federov, Theory of Elastic Waves in Crystals, Springer Science+Business Media New York (1968). See Chap. 3.

    Book  Google Scholar 

  40. R. B. Wilson, “Precision polishing of thin single-crystal layers,” J. Sci. Instruments 44, 159 (1967).

    Article  CAS  Google Scholar 

  41. G. A. Bennett and R. B. Wilson, “Precision polishing technique for optics and microwave acoustics,” J. Sci. Instruments 43, 669–670 (1966).

    Article  Google Scholar 

  42. H. J. McSkimin, in Physical Acoustics (W. P. Mason, ed.), Vol. I, Part A, Academic Press Inc., New York (1964), pp. 271–334. (See especially p. 318.)

    Google Scholar 

  43. H. J. McSkimin, “Measurement of ultrasonic wave velocities for solids in the frequency range 100 to 500 MHz,”J.Acous. Soc. Am. 34, 404–409 (1962).

    Article  Google Scholar 

  44. J. Lamb, M. Redwood, and Z. Shteinshleifer, “Absorption of compressional waves in solids from 100 to 1000 MHz”, Phys. Rev. Letters 3, 28–29 (1959).

    Article  CAS  Google Scholar 

  45. E. G. Spencer, R. T. Denton, T. B. Bateman, W. B. Snow, and L. G. Van Uitert, “Microwave elastic properties of nonmagnetic garnets,”J.Appl. Phys. 34, 3059–3060 (1963).

    Article  CAS  Google Scholar 

  46. J. T. Krause, “Gold-indium bond for measurement of ultrasonic properties in solids at high temperatures,” J. Appl. Phys. 39, 5334–5335 (1968).

    Article  CAS  Google Scholar 

  47. A. H. Meitzler and A. H. Fitch, “The acoustoelastic effect in vitreous silica, Pyrex, and T-40 glass,” J. Appl. Phys. 40, 1614–1621 (1969).

    Article  CAS  Google Scholar 

  48. D. L. White, “β-quartz as a high-temperature piezoelectric material,”J.Acous. Soc. Am. 31, 311–314 (1959).

    Article  Google Scholar 

  49. H. M. Matthews and R. C. LeCraw, “Acoustic wave rotation by magnon-phonon interaction,” Phys. Rev. Letters 8, 397–399 (1963).

    Article  Google Scholar 

  50. J. P. Remeika and A. A. Ballman, “Flux growth, Czochralski growth, and hydro-thermal synthesis of lithium metagallate single crystals,” Appl. Phys. Letters 7, 180–181 (1964).

    Article  Google Scholar 

  51. A. W. Warner, “New piezoelectric materials,” in Proceedings of the 19th Annual Symposium on Frequency Control, April 1965, pp. 5–21.

    Google Scholar 

  52. A. A. Ballman, “The growth and properties of piezoelectric bismuth germanium oxide Bi12GeO20,” International J. Crystal Growth 1, 37–40 (1967).

    Article  CAS  Google Scholar 

  53. M. Onoe, A. W. Warner, and A. A. Ballman, “Elastic and piezoelectric characteristics of bismuth germanium oxide Bi12GeO20,” IEEE Trans. on Sonics and Ultrasonics SU-14, 165–167 (1967).

    Article  Google Scholar 

  54. E. J. Spencer, P. V. Lenzo, and A. A. Ballman, “Ultrasonic properties of bismuth germanium oxide,” Appl. Phys. Letters 9, 201–291 (1966).

    Article  Google Scholar 

  55. S. Haussühl, “Piezoelectric and electric behavior of lithium iodate” (in German), Phys. Stat. Sol. 29, K159–161 (1968).

    Article  Google Scholar 

  56. A. W. Warner, J. G. Bergman Jr., D. A. Pinnow, and G. R. Crane, “Piezoelectric and photoelastic properties of lithium iodate,” to be published, J.Acous. Soc. Am. (1970).

    Google Scholar 

  57. E. G. Spencer, P. V. Lenzo, and A. A. Ballman, “Dielectric material for electrooptic, elastooptic, and ultrasonic device applications,” Proc. IEEE 55, 2074–2108 (1967).

    Article  CAS  Google Scholar 

  58. A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique,”J.Am. Ceramic Soc. 48, 112 (1965).

    Article  CAS  Google Scholar 

  59. K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations, and etching,” J.Phys. Chem. Solids 27, 983–988 (1966).

    Article  CAS  Google Scholar 

  60. K. Nassau, H. J. Levinstein, and G. M. Loiacono, “Ferroelectric lithium niobate. 2. Preparation of single-domain crystals,” J.Phys. Chem. Solids 27, 989–996 (1966).

    Article  CAS  Google Scholar 

  61. S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single-crystal X-ray diffraction study at 24°C,”J.Phys. Chem. Solids 27, 997–1012 (1966).

    Article  CAS  Google Scholar 

  62. S. C. Abrahams, W. C. Hamilton, and J. M. Reddy, “Ferroelectric lithium niobate. 4. Single-crystal neutron diffraction study at 24°C,” J. Phys. Chem. Solids 27, 1013–1018 (1966).

    Article  CAS  Google Scholar 

  63. S. C. Abrahams, H. J. Levinstein, and J. M. Reddy, “Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24 and 1200°C,” J. Phys. Chem. Solids 27, 1019–1026 (1966).

    Article  CAS  Google Scholar 

  64. D. B. Fraser and A. W. Warner, “Lithium niobate: a high-temperature piezoelectric transducer material,”J.Appl Physics 37, 3853–3854 (1966).

    Article  CAS  Google Scholar 

  65. A. W. Warner, M. Onoe, and G. A. Coquin, “Determination of elastic and piezoelectric constants for crystal in class [3m],”J.Acous. Soc. Am. 42, 1223–1231 (1967).

    Article  CAS  Google Scholar 

  66. B. T. Matthias and J. P. Remeika, “Ferroelectricity in the ilmenite structure,” Phys. Rev. 76, 1886–1887 (1949).

    Article  Google Scholar 

  67. H. J. Levinstein, A. A. Ballman, and C. D. Capio, “Domain structure and Curie temperatures of single-crystal lithium tantalate,”J.Appl. Phys. 37, 4585 (1966).

    Article  CAS  Google Scholar 

  68. A. W. Warner and A. A. Ballman, “Low-temperature coefficient of frequency in a lithium tantalate resonator,” Proc. IEEE 55, 450 (1967).

    Article  Google Scholar 

  69. J. J. Rubin, L. G. Van Uitert, and H. J. Levinstein, “The growth of single-crystal niobates for electrooptic and nonlinear applications,” Int. J. Crys. Growth 1, 315 (1967).

    Article  CAS  Google Scholar 

  70. L. J. Van Uitert, J. J. Rubin, and W. A. Bonner, “Growth of Ba2NaNb5O15 single crystals for optical applications,” IEEE Trans. on Quantum Electronics QE-4, 622–627 (1968).

    Article  Google Scholar 

  71. J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, “The nonlinear optical properties of Ba2NaNb5O15,” Appl. Phys. Letters 11, 269–271 (1967).

    Article  CAS  Google Scholar 

  72. J. E. Geusic, H. J. Levinstein, J. J. Rubin, S. Singh, and L. G. Van Uitert, An error correction for the above paper, Appl. Phys. Letters 12, 224 (1968).

    Article  Google Scholar 

  73. A. W. Warner, G. A. Coquin, A. H. Meitzler, and J. L. Fink, “Piezoelectric properties of Ba2NaNb5O15,” Appl. Phys. Letters 14, 34–35 (1969).

    Article  CAS  Google Scholar 

  74. A. W. Warner, G. A. Coquin, and J. L. Fink, “Elastic and piezoelectric constants of Ba2NaNb5O15,”J.Appl. Phys. 40, 4353–4356 (1969).

    Article  CAS  Google Scholar 

  75. L. Egerton and D. M. Dillon, “Piezoelectric and dielectric properties of ceramics in the system potassium-sodium niobate,”J.Amer. Ceramic Soc. 42, 438–442 (1959).

    Article  CAS  Google Scholar 

  76. L. Egerton and C. A. Bieling, “Isostatically hot-pressed sodium-potassium niobate transducer material for ultrasonic devices,” Am. Ceram. Soc. Bull. 47, 1151–1156 (1968).

    CAS  Google Scholar 

  77. D. Berlincourt, “Delay line transducer materials,” 1967 IEEE International Convention Record, Pt. 11, 61–68 (1967).

    Google Scholar 

  78. R. E. Dean, unpublished memorandum.

    Google Scholar 

  79. J. S. Jones, “VHF ultrasonic delay line bonding,” to be published in IEEE Trans. on Sonics and Ultrasonics.

    Google Scholar 

  80. D. R. Herriott, J. S. Jones, T. R. Meeker, and K. Reznicek, U.S. Patent No. 3,453, 166 “Method and apparatus for bonding transducer element,” July 1, 1969.

    Google Scholar 

  81. E. K. Sittig, unpublished data.

    Google Scholar 

  82. D. L. Arenberg, U.S. Patent No. 2,754,238, “Method of bonding and article thereby formed,” July 10, 1956.

    Google Scholar 

  83. D. Beecham, “Sputter machining of piezoelectric transducers,”J.Appl. Phys. 40, 4357–4361 (1969).

    Article  CAS  Google Scholar 

  84. N. F. Foster, “Crystallographic orientation of zinc oxide films deposited by triode sputtering,”J.Vacuum Science and Technology 6, 111–114 (1969).

    Article  CAS  Google Scholar 

  85. N. F. Foster and A. H. Meitzler, “Insertion loss and coupling factors in thin-film transducers,”J.Appl. Phys. 39, 4460–4461 (1968).

    Article  Google Scholar 

  86. N. F. Foster, Cadmium sulfide evaporated-layer transducers,Proc. IEEE 53, 1400–1405 (1965).

    Article  Google Scholar 

  87. J. de Klerk, “Thin-film piezoelectric transducers used as generators and detectors of microwave phonons, with some attenuation measurements in SiO2,”J.Appl. Phys. 37, 4522–4528 (1966).

    Article  Google Scholar 

  88. J. de Klerk and E. F. Kelley, “Vapor deposited thin-film piezoelectric transducers”, Rev. Sci. Instr. 36, 506 (1965).

    Article  Google Scholar 

  89. R. Weber, “Electron bombardment technique for deposition of CdS film transducers,” Rev. Sci. Instr. 37, 955–956 (1966).

    Article  CAS  Google Scholar 

  90. N. F. Foster, “Structure of CdS evaporated films in relation to their use as ultrasonic transducers,”J.Appl. Phys. 38, 149 (1967).

    Article  CAS  Google Scholar 

  91. R. M. Malbon, D. J. Walsh, and D. K. Winslow, “Zinc oxide film microwave acoustic transducers,” Appl. Phys. Letters 10, 9–10 (1967).

    Article  CAS  Google Scholar 

  92. S. Wanuga, T. A. Midford, and J. P. Dietz, “Zinc oxide film transducers,” paper presented at the IEEE Ultrasonics Symposium, Boston, Mass., December, 1965.

    Google Scholar 

  93. G. A. Rozgonyi and W. J. Polito, “Preparation of ZnO thin films by sputtering of the compound in oxygen-argon,” Appl. Phys. Letters 8, 220–221 (1966).

    Article  CAS  Google Scholar 

  94. H. D. Cook, unpublished work.

    Google Scholar 

  95. D. L. Denburg and F. A. Vannatta, “Wide-band high-coupling ZnO transducers for microwave delay lines and optical modulators,” paper presented at the 1969 IEEE Ultrasonics Symposium, St. Louis, Missouri, September, 1969.

    Google Scholar 

  96. M. T. Wauk and D. K. Winslow, “Vacuum deposition of A1N acoustic transducers,” Appl. Phys. Letters 13, 286–288 (1968).

    Article  CAS  Google Scholar 

  97. C. E. Land and P. D. Thacher, “Ferroelectric ceramic electrooptic materials and devices,” Proc. IEEE 57, 751–768 (1969).

    Article  CAS  Google Scholar 

  98. J. R. Maldonado and A. H. Meitzler, “Ferroelectric ceramic light gates operated in a voltage-controlled mode,” IEEE Trans. Electron Devices, ED-17,148–157 (1970).

    Article  Google Scholar 

  99. Tomoya Ogawa, “Estimation of the spontaneous polarization of hexagonal ZnS, CdS and ZnO crystals,”J.Phys. Soc. Japan 25, 1126–1128 (1968).

    Article  CAS  Google Scholar 

  100. N. F. Foster, “The deposition and piezoelectric characteristics of sputtered lithium niobate films,”J.Appl. Phys. 40, 420–421 (1969).

    Article  CAS  Google Scholar 

  101. M. Onoe, H. F. Tiersten, and A. H. Meitzler, “Shift in location of resonant frequencies caused by large electromechanical coupling in thickness-mode resonators”,J.Acous. Soc. Am. 35, 36–42 (1967).

    Article  Google Scholar 

  102. D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics (W. P. Mason, ed.) Vol. I, Academic Press Inc., New York (1964), Part A, pp. 169–270.

    Google Scholar 

  103. D. B. Fraser, J. T. Krause, and A. H. Meitzler, “Physical limitations on the performance of vitreous silica in high-frequency ultrasonic and acoustooptical devices,” AppL Phys. Letters 11, 308–310 (1967).

    Article  Google Scholar 

  104. J. T. Krause, unpublished data.

    Google Scholar 

  105. D. E. Chapin, “Frequency and temperature dependence of shear wave attenuation in Bausch and Lomb T-40 glass,” IEEE Trans. on Sonics and Ultrasonics SU-15, 178–181 (1968).

    Article  Google Scholar 

  106. D. B. Fraser, unpublished data.

    Google Scholar 

  107. W. P. Mason, Physical Acoustics and Properties of Solids, D. Van Nostrand Co., Inc. New York (1958), p. 17.

    Google Scholar 

  108. E. K. Sittig, unpublished data.

    Google Scholar 

  109. J. de Klerk, “Multilayer thin film piezoelectric transducers,” IEEE Trans. Sonics and Ultrasonics SU-13, 99–103 (1966).

    Article  Google Scholar 

  110. E. G. Spencer, R. T. Denton, T. B. Bateman, W. B. Snow, and L. G. Van Uitert, “Microwave elastic properties of nonmagnetic garnets,”J.Appl. Phys. 34, 3059–3060 (1963).

    Article  CAS  Google Scholar 

  111. D. A. Pinnow, L. G. Van Uitert, A. W. Warner, and W. A. Bonner, “Lead molybdate: a melt-grown crystal with a high figure of merit for acoustooptical device applications,” Appl. Phys. Letters 15, 83–86 (1969).

    Article  CAS  Google Scholar 

  112. A. H. Fitch, unpublished data.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

O. E. Mattiat

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meitzler, A.H. (1971). Piezoelectric Transducer Materials and Techniques for Ultrasonic Devices Operating above 100 MHz. In: Mattiat, O.E. (eds) Ultrasonic Transducer Materials. Ultrasonic Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0468-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0468-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0470-9

  • Online ISBN: 978-1-4757-0468-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics