Skip to main content

Exponentially Small Residues Near Analytic Invariant Circles

  • Chapter
Book cover Asymptotics beyond All Orders

Part of the book series: NATO ASI Series ((NSSB,volume 284))

  • 399 Accesses

Abstract

For analytic area-preserving twist maps, we sketch a proof that the “residues” of “good” sequences of periodic orbits with rotation number converging to that of an invariant circle with analytic conjugacy to rotation converge to zero exponentially, with decay rate at least the “analyticity width” of the conjugacy. This confirms numerical observations of Greene and Percival, and provides an important part of a mathematical foundation for Greene’s residue criterion, relating existence of an invariant circle of given rotation number to the behaviour of the residues of periodic orbits with rotation number converging to the given one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angenent S, talk given at the IMA workshop on Twist Maps and their Applications, Minnesota, March 1990

    Google Scholar 

  2. Arnol’d VI, Mathematical methods of classical mechanics (Springer, 1978)

    Google Scholar 

  3. Aubry S, The concept of anti-integrability: definition, theorems and applications to the standard map, in Twist Maps and their Applications, ed Meyer KR, IMA conf proc, to appear (Springer)

    Google Scholar 

  4. Aubry S, Abramovici G, Chaotic trajectories in the standard map: the concept of anti-integrability, Physica D 43 (1990) 199–219

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bangert V, Mather sets for twist maps and geodesics on tori, Dynamics Reported vol. 1 (1988), eds Kirchgraber U, Walter HO (Wiley)

    Google Scholar 

  6. Douady R, Applications du théorème des tores invariants, Thèse 3ème cycle, Univ Paris VII (1982)

    Google Scholar 

  7. Fontich E, Simo C, The splitting of separatrices for analytic diffeomorphisms, Ergod Th Dyn Sys 10 (1990) 295–318

    MathSciNet  MATH  Google Scholar 

  8. Greene JM, A method for determining a stochastic transition, J Math Phys 20 (1979)1183–1201

    Article  ADS  Google Scholar 

  9. Greene JM, KAM surfaces computed from the Hénon-Heiles Hamiltonian, in Nonlinear Dynamics and the beam-beam interaction, eds Month M, Herrera JC, Am Inst Phys Conf Proc 57 (1980) 257–271

    Google Scholar 

  10. Greene JM, The calculation of KAM surfaces, Ann NY Acad Sci 357 (1980) 80–89

    Google Scholar 

  11. Greene JM, MacKay RS, An approximation to the critical commuting pair for breakup of noble tori, Phys Lett A 107 (1985) 1–4

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Greene JM, Percival IC, Hamiltonian maps in the complex plane, Physica D 3 (1981)530–548

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Lazutkin VF, Schachmannski IG, Tabanov MB, Splitting of separatrices for the standard and semi-standard mappings, Physica D 40 (1989) 235–248

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. MacKay RS, On Greene’s Residue Criterion, submitted to Nonlinearity

    Google Scholar 

  15. MacKay RS, Introduction to the dynamics of area-preserving maps, in Physics of particle accelerators, eds Month M, Dienes M, Am Inst Phys Conf Proc 153 (1987) vol.1, 534–602

    Google Scholar 

  16. MacKay RS, A criterion for non-existence of invariant tori for Hamiltonian systems, Physica D 36 (1989) 64–82

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. MacKay RS, Meiss JD, Linear stability of periodic orbits in Lagrangian systems, Phys Lett A 98 (1983) 92–94

    Article  MathSciNet  ADS  Google Scholar 

  18. MacKay RS, Meiss JD, Cantori for symplectic maps near an anti-integrable limit, submitted to Nonlinearity

    Google Scholar 

  19. MacKay RS, Meiss JD, Stark J, Converse KAM theory for symplectic twist maps, Nonlinearity 2 (1989) 555–570

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. MacKay RS, Percival IC, Converse KAM: theory and practice, Commun Math Phys 98 (1985) 469–512

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Salamon D, Zehnder E, KAM theory in configuration space, Comment Math Helv 64 (1989) 84–132

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

MacKay, R.S. (1991). Exponentially Small Residues Near Analytic Invariant Circles. In: Segur, H., Tanveer, S., Levine, H. (eds) Asymptotics beyond All Orders. NATO ASI Series, vol 284. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0435-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0435-8_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0437-2

  • Online ISBN: 978-1-4757-0435-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics