Skip to main content

Immobilized Enzymes

  • Chapter
Bioactive Polymeric Systems

Abstract

The literature abounds with procedures to immobilize enzymes which generally fit into one of six main categories. The earliest methods developed were enzyme adsorption and cross-linking. Adsorption-cross-linking, the combination of these methods, results in a more utilitarian catalyst. The most widely used method is covalent bonding of the enzyme to a support material; but entrapment and microencapsulation are valuable techniques for immobilization of enzymes.

The properties of immobilized enzymes are affected by the support material. In essence, the physical properties are those of the support material. Inorganic supports result in rigid catalysts with moderate enzyme loading. Very high enzyme loading can be achieved with organic supports which are easily molded into desired shapes. The support used for immobilization of enzymes also affects the chemical properties of the catalyst. The optimum pH is often different for an immobilized enzyme than for the soluble enzyme and changes in substrate specificity have also been observed.

Immobilized enzymes find applications both in industrial processing and analytical testing. In addition, immobilized enzymes have been used for analysis of the structure-function relationships of enzymes. Although showing considerable promise, therapeutic applications generally remain in the research stage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Wiseman, in: Handbook of Enzyme Biotechnology (A. Wiseman, ed.), pp. 111–124, Wiley, New York (1975).

    Google Scholar 

  2. M. Keyes, Encyclopedia of Chemical Technology, Vol. 9, 148–172, Wiley, New York (1980).

    Google Scholar 

  3. T. Everse, C. L. Ginsburg, and N. O. Kaplan, Methods Biochem. Anal. 25, 135–201 (1977).

    Google Scholar 

  4. J. S. Holcenberg and J. Roberts, ed., Enzymes as Drugs, pp. 1–353, Wiley, New York (1981).

    Google Scholar 

  5. P. J. Lisi, T. van Es, A. Abuchowski, N. C. Palczuk, and F. F. Davis,J. Appl Biochem. 4, 19–33 (1982).

    CAS  Google Scholar 

  6. C. H. W. Hirs, ed., Methods in Enzymology, Vol. 11, pp. 481–640, Academic Press, New York (1967).

    Google Scholar 

  7. C. H. W. Hirs and S. N. Timasheff, ed., Mewthods in Enzymology, Vol. 25, pp. 339–651, Academic Press, New York (1972).

    Google Scholar 

  8. M. A. Mitz and L. J. Summaria, Nature {London) 169, 576–577 (1961).

    Google Scholar 

  9. P. W. Carr and L. D. Bowers, Immobilized Enzymes in Analytical and Clinical Chemistry, Wiley, New York (1980).

    Google Scholar 

  10. L. B. Wingard, E. Katchalski-Katzir and L. Goldstein, eds., Applied Biochemical Bioengineering, Vol. 1, Academic Press, New York (1976).

    Google Scholar 

  11. I. Chibata, Immobilized Enzymes, Wiley, New York (1978).

    Google Scholar 

  12. T. K. Ghose, A. Fiechter, and N. Blakebrough, eds., Advanced Biochemical Engineering, Vol. 10, Springer-Verlag, New York (1978).

    Google Scholar 

  13. R. A. Messing, ed., Immobilized Enmzymes for Industrial Reactors, Academic Press, New York (1975).

    Google Scholar 

  14. K. Mosbach, ed., Methods in Enzymology, Vol. 44, Academic Press, New York (1976).

    Google Scholar 

  15. L. B. Wingard, Jr., E. Katchalski-Katzir, and L. Goldstein, eds. Applied Biochemical Bioengineering, Vol. 3, Academic Press, New York (1981).

    Google Scholar 

  16. A. C. Olson and C. L. Cooney, eds., Immobilized Enzymes Food Microbiology Processes, (Proceedings of Symposium), Plenum Press, New York (1974).

    Google Scholar 

  17. M. Salmona, C. Saronio, and S. Garottini, eds., Insolubilized Enzymes, Raven Press, New York (1974).

    Google Scholar 

  18. T. M. S. Chang, ed., Biomedical Applied Immobilized Enzymes Proteins, Vol. 1, Plenum Press, New York (1977).

    Google Scholar 

  19. R. A. Messing, in: Advanced Biochemical Engineering (T. K. Ghose, A. Fiechter, and N. Blakebrough, eds.), Vol. 10, pp. 51–73, Springer-Verlag, New York (1978).

    Google Scholar 

  20. G. P. Royer, G. M. Green, and B. K. Sinha, in: Polymer Grafts in Biochemistry (H. F. Hixson, Jr. and E. P. Goldberg, eds.), pp. 289–307, Marcel Dekker, New York (1976).

    Google Scholar 

  21. O. Zaborsky, in: Biomedical Applications of Immobilized Enzymes and Proteins (T. M. S. Chang, ed.), p. 37, Plenum Press, New York (1977).

    Google Scholar 

  22. R. A. Messing, Biotechnol. Bioeng. 16, 897–908 (1974).

    CAS  Google Scholar 

  23. P. Grunwald, W. Gunsser, F. R. Heiker, and W. Roy, Anal. Biochem. 100, 54–57 (1979).

    CAS  Google Scholar 

  24. G. A. Kovalenki, N. B. Shitova, and U. D. Sokolowski, Biotechnol. Bioeng. 23, 1721–1734 (1981).

    Google Scholar 

  25. R. Uy and F. Wold, in: Advanced Experimental Medical Biology (M. Friedman, ed.), Vol. 86A, pp. 169–186, Plenum Press, New York (1977).

    Google Scholar 

  26. F. M. Richards and J. R. Knowles,J. Mol. Biol. 37, 231–233 (1968).

    CAS  Google Scholar 

  27. P. Monsan, G. Puzo, and H. Mozargui, Biochimie 57, 1281–1292 (1975).

    CAS  Google Scholar 

  28. R. Haynes and K. A. Walsh, Biochem. Biophys. Res. Commun. 36, 235–242 (1969).

    CAS  Google Scholar 

  29. R. Haynes and K. A. Walsh, U.S. Patent No. 3,796,634 (1974).

    Google Scholar 

  30. M. H. Keyes, U.S. Patent No. 3,933,589 (1976).

    Google Scholar 

  31. M. H. Keyes, U.S. Patent No. 4,008,126 (1977).

    Google Scholar 

  32. M. H. Keyes, U.S. Patent No. 4,204,040 (1980).

    Google Scholar 

  33. R. A. Messing, U.S. Patent No. 3,804,719 (1974).

    Google Scholar 

  34. G. Brown, E. Selegny, S. Avrameas, and D. Thomas, Biochim. Biophys. Acta 185, 260–262 (1969).

    Google Scholar 

  35. J. Porath, in: Methods in Enzymology (W. B. Jacoby and M. Wilchek, eds.), Vol. 34, pp. 13–30, Academic Press, New York (1974).

    Google Scholar 

  36. J. Porath and R. Axen, in: Methods in Enzymology (K. Mosbnach, ed.), Vol. 44, pp. 19–42, Academic Press, New York (1976).

    Google Scholar 

  37. M. D. Lilly, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 46–53, Academic Press, New York (1976).

    Google Scholar 

  38. I. Chibata, Immobilized Enzymes, pp. 15–46, Wiley, New York (1978).

    Google Scholar 

  39. R. Axen and S. Ernback, Eur. J. Biochem. 1971, 21 351–360.

    Google Scholar 

  40. R. Axen, J. Porath, and S. Ernback, Nature(London) 214, 1302–1304 (1967).

    CAS  Google Scholar 

  41. R. Axen and P. Vretblad, Acta Chem. Scand. 25, 2711–2716 (1971).

    CAS  Google Scholar 

  42. R. L. Schnaar, T. F. Sparks, and S. Roseman, Anal. Biochem. 79, 513–525 (1977).

    CAS  Google Scholar 

  43. M. Wilchek, T. Oka, and Y. J. Trooper, Proc. Natl. Acad. Sci. U.S.A. 72, 1055–1058 (1975).

    CAS  Google Scholar 

  44. K. Kohn and M. Wilchek, Biochem. Biophys. Res. Commun. 84, 7–14 (1978).

    CAS  Google Scholar 

  45. J. Kohn and M. Wilchek, Anal. Biochem. 115, 375–382 (1981).

    CAS  Google Scholar 

  46. J. Kohn and M. Wilchek, Enzyme Microb. Technol. 4, 161–164 (1982).

    CAS  Google Scholar 

  47. H. Rosemeyer, E. Körnig, and F. Seela, Eur. J. Biochem. 122, 375–380 (1982).

    CAS  Google Scholar 

  48. L. R. Benkova, M. Mrackova, and K. Baber, Collect. Czech. Chem. Commun. 45, 160–167 (1980).

    Google Scholar 

  49. M. Iwaki and M. Nozaki,J. Biochem.(Tokyo) 91, 1549–1553 (1982).

    CAS  Google Scholar 

  50. M. Wilchek, in: Enzyme Engineering (E. K. Pye and H. H. Weetall, eds.), Vol. 3, pp. 283–289, Plenum Press, New York (1978).

    Google Scholar 

  51. J. F. Kennedy and J. A. Barnes, Int. J. Biol. Macromol. 2, 289–296 (1980).

    CAS  Google Scholar 

  52. T. Oka and Y. J. Trooper, Proc. Natl. Acad. Sci. U.S.A. 71, 1630–1636 (1974).

    CAS  Google Scholar 

  53. M. Wilchek and T. Miron, in: Methods in Enzymology (W. B. Jakoby and M. Wilchek, eds.), Vol. 34, pp. 72–76, Academic Press, New York (1974).

    Google Scholar 

  54. O. Hannibal-Friedrich, M. Chun, and M. Sernetz, Biotechnol. Bioeng. 22, 157–175 (1980).

    CAS  Google Scholar 

  55. I. Matsumoto, H. Kitagaki, Y. Akai, Y. Ito, and N. Seno, Anal. Biochem. 116, 103–110 (1981).

    CAS  Google Scholar 

  56. I. Matsumoto, Y. Mizuno, and H. Seno, J. Biochem. (Tokyo) 85, 1091–1098 (1979).

    CAS  Google Scholar 

  57. L. Sundberg and J. Porath, J. Chromatogr. 90, 97–98 (1974).

    Google Scholar 

  58. K. Nilsson, O. Norrlow, and K. Mosbach, Acta Chem. Scand., Ser, B 35, 19–27 (1981).

    Google Scholar 

  59. K. Nilsson and K. Mosbach, Biochem. Biophys. Res. Commun. 102, 449–457 (1981).

    CAS  Google Scholar 

  60. L. Bulow and K. Mosbach, Biochem. Biophys. Res. Commun. 107, 456–464 (1982).

    Google Scholar 

  61. T. H. Finlay, V. Troll, M. Levey, A. J. Johnson, and L. T. Hodgins, Anal. Biochem. 87, 77–90 (1978).

    CAS  Google Scholar 

  62. G. Kay and M. D. Lilly, Biochim. Biophys. Acta 198, 276–285 (1970).

    CAS  Google Scholar 

  63. C. Smith and H. M. Lenhoff, Anal. Biochem. 61, 302–305 (1974).

    Google Scholar 

  64. P. Cuatrecasas and I. Parikh, Biochemistry 11, 2291–2298 (1972).

    CAS  Google Scholar 

  65. R. G. Frost, J. F. Monthony, S. C. Engelhorn, and C. J. Siebert, Biochim. Biophys. Acta 670, 163–169 (1981).

    CAS  Google Scholar 

  66. S. A. Berker, H. C. Tun, D. H. Doss, C. J. Gray, and J. F. Kennedy, Carbohydr. Res. 17, 471–474 (1971).

    Google Scholar 

  67. J. F. Kennedy and A. Zamir, Carbohydr. Res. 29, 497–501 (1973).

    CAS  Google Scholar 

  68. C. J. Grey and T. H. Yeo, Carbohydr. Res. 27, 2325–238 (1973).

    Google Scholar 

  69. J. Porath, T. Laas, and J. C. Janson,J. Chromatogr. 103, 49–62 (1975).

    CAS  Google Scholar 

  70. J. Brandt, L. Andersson, and J. Porath, Biochim. Biophys. Acta 386, 196–202 (1967).

    Google Scholar 

  71. M. Singh, A. R. Ray, P. Vasudevan, P. Verma, and S. K. Guha, Biomater. Med. Dev. Artif. Organs 7, 495–512 (1979).

    CAS  Google Scholar 

  72. F. B. Weakley and C. L. Mehltretter, Biotechnol Bioeng. 15, 1189–1192 (1973).

    CAS  Google Scholar 

  73. S. A. Barker and J. F. Kennedy, in: Handbook of Enzyme Biotechnology (A. Wiseman, ed.), pp. 203–209, Wiley, New York (1975).

    Google Scholar 

  74. L. A. Cohen, in: Methods in Enzymology (W. B. Jakoby and M. Wilchek, eds.), Vol. 34, pp. 103–108, Academic Press, New York (1974).

    Google Scholar 

  75. K. Brocklehurst, J. Carlsson, M. P. J. Kiersten, and E. M. Crook, Biochem. J. 133, 573–584 (1973).

    CAS  Google Scholar 

  76. J. S. Lin and J. F. Foster, Anal. Biochem. 63, 485–490 (1975)

    CAS  Google Scholar 

  77. J. Carlsson, R. Axen, and T. Unge, Eur. J. Biochem. 59, 567–572 (1975).

    CAS  Google Scholar 

  78. J. Carlsson, R. Axen, K. Brocklehurst, and E. M. Crook, Eur. J. Biochem. 44, 189–194 (1974).

    CAS  Google Scholar 

  79. R. Axen, O. Vretblad, and J. Porath, Acta Chem. Scand. 25, 1129–1132 (1971).

    CAS  Google Scholar 

  80. P. Vretblad and R. Axen, Acta Chem. Scand. 27, 2769–2780 (1973).

    CAS  Google Scholar 

  81. L. Goldstein, J. Chromatogr. 215, 31–43 (1981).

    CAS  Google Scholar 

  82. H. H. Weetall, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 134–148, Academic Press, New York (1976).

    Google Scholar 

  83. A. Wiseman, in: Topics in Enzyme Fermentation Biotechnology (A. Wiseman, ed), Vol. 2, pp. 49–57, Halsted Press, New York (1978).

    Google Scholar 

  84. H. H. Weetall, Nature (London) 223, 959–960 (1969).

    CAS  Google Scholar 

  85. H. H. Weetall, in: Advanced Experimental Medical Biology (R. B. Dunlap, ed.), Vol. 42, pp. 191–212, Plenum Press, New York (1974).

    Google Scholar 

  86. W. F. Line, H. Wong, and H. H. Weetall, Biochim. Biophys. Acta 242, 194–202 (1971).

    CAS  Google Scholar 

  87. H.H. Weetall and A. M. Filbert, in: Methods in Enzymology (W. B. Jakoby and M. Wilchek, eds.), Vol. 34, pp. 295–297, Academic Press, New York (1974).

    Google Scholar 

  88. M. V. Wondolowski and T. H. Woychik, Biotechnol. Bioeng. 16, 1633–1654 (1974).

    CAS  Google Scholar 

  89. B. E. Dale and D. H. White, Biotechnol. Bioeng. 21, 1639–1648 (1979).

    CAS  Google Scholar 

  90. K. Parkin and H. O. Hultin, Biotechnol. Bioeng. 21, 939–953 (1979).

    CAS  Google Scholar 

  91. V. Ramesh and C. Singh,J. Appl. Biochem. 4, 81–85 (1982).

    CAS  Google Scholar 

  92. B. Danielsson, B. Mattiason, R. Karlsson, and F. Winqvist, Biotechnol. Bioeng. 21, 1749–1766 (1979).

    CAS  Google Scholar 

  93. C. C. Hon and P. J. Reilly, Biotechnol. Bioeng. 21, 505–511 (1979).

    CAS  Google Scholar 

  94. O. V. Lomako, I. I. Menyailova, C. A. Nakhapetyan, Y. Nikitin, and A. V. Kiselev, Enzyme Microb. Technol. 4, 89–92 (1982).

    CAS  Google Scholar 

  95. C. D. Bowers and P. B. Johnson, Anal. Biochem. 116, 111–115 (1981).

    CAS  Google Scholar 

  96. G. P. Royer, F. A. Liberatore, and G. M. Green, Biochem. Biophys. Res. Commun. 64, 478–484 (1975).

    CAS  Google Scholar 

  97. L. D. Bowers and P. W. Carr, Anal. Chem. 48, 549–558 (1976).

    Google Scholar 

  98. J. M. Cabrai, J. M. Nováis, and J. P. Cardoso, Biotechnol. Bioeng. 23, 2083–2092 (1981).

    Google Scholar 

  99. R. D. Mason and H. H. Weetall, Biotechnol Bioeng. 14, 637–645 (1972).

    CAS  Google Scholar 

  100. B. Weiss, M. Hui, and A. Lajtha, Biochem. Med. 18, 330–343 (1977).

    CAS  Google Scholar 

  101. T. Mori, F. Sato, T. Tosa, and I. Chibata, Enzymologia 43, 217–226 (1972).

    Google Scholar 

  102. S. E. Brolin, A. Agren, B. Ekman, and S. Joholm, Anal. Biochem. 78, 577–581 (1977).

    CAS  Google Scholar 

  103. A. Szewczuk, A. Ziomek, M. Mordarski, M. Siewinski, and J. Wieczorek, Biotechnol. Bioeng. 21, 1543–1552 (1979).

    CAS  Google Scholar 

  104. K. F. O’Driscoll, in: Methods in Enzoymology (K. Mosbach, ed.), Vol. 44, pp. 169–175, Academic Press, New York (1976).

    Google Scholar 

  105. K. F. O’Driscoll, M. Izu, and R. Korus, Biotechnol. Bioeng. 14, 847–850 (1972).

    Google Scholar 

  106. S. Fukui, A. Tanaka, T. Iida, and E. Hasegawa, FEBS Lett. 66, 179–182 (1976).

    CAS  Google Scholar 

  107. I. Kaetsu, K. Minoru, and Y. Yoshida, Biotechnol. Bioeng. 21, 847–861 (1979).

    CAS  Google Scholar 

  108. J. Dobo, Acta Chim. Acad. Sci. Hung. 63, 453–456 (1970).

    CAS  Google Scholar 

  109. K. Kawashima and K. Umeda, Biotechnol. Bioeng. 16, 609–621 (1979).

    Google Scholar 

  110. K. Kawashima and K. Umeda, Agric. Biol. Chem. 40, 1151–1157 (1979).

    Google Scholar 

  111. I. Kaetsu, M. Kumakura, and M. Yoshida, Biotechnol. Bioeng. 21, 847–861 (1979).

    CAS  Google Scholar 

  112. H. Maeda, H. Suzuki, and A. Yamauchi, Biotechnol Bioeng. 15, 607–610 (1973).

    CAS  Google Scholar 

  113. H. Maeda, H. Suzuki, and A. Yamauchi, Biotechnol. Bioeng. 15, 827–829 (1973).

    CAS  Google Scholar 

  114. T. Yagi, Appl. Biochem. 1, 448–454 (1979).

    CAS  Google Scholar 

  115. V. Jancsik, Z. Belezani, and T. Keleti, J. Mol. Catal 54 297–306 (1982).

    Google Scholar 

  116. T. Tosa, T. Sato, K. Mori, I. Yamamoto, Y. Takata, Y. Nishida, and I. Chibata, Biotechnol. Bioeng. 21, 1697–1707 (1979).

    CAS  Google Scholar 

  117. Y. Y. Linko, L. Pohtola, R. Viskari, and M. Linko, FEBS Lett. 62, 77–80 (1976).

    CAS  Google Scholar 

  118. E. K. Bauman, L. H. Goodson, G. G. Guilbault, and D. N. Kramer, Anal. Chem. 37, 1378–1381 (1965).

    CAS  Google Scholar 

  119. A. Pollak, H. Blumenfeld, M. Wax, R. Bughn, and G. M. Whiteside,J. Am. Chem. Soc. 102, 6326–6336 (1980).

    Google Scholar 

  120. L. D’Angiuro, P. Cremonesi, G. Mazzola, B. Fochev, and G. Vecchio, Biotechnol. Bioeng. 22, 2251–2272 (1980).

    Google Scholar 

  121. L. D’Angiuro, G. Mazzola, G. Vecchio, B. Fochev, and P. Cremonesi, J. Appl. Biochem. 2, 208–217 (1980).

    Google Scholar 

  122. T. M. S. Chang, Nature (London) 229, 117–118 (1971).

    CAS  Google Scholar 

  123. T. Mori, T. Tosa, and I. Chibata, Biochim. Biophys. Acta 321, 653–661 (1973).

    CAS  Google Scholar 

  124. R. D. Aisina and G. B. Nakdarni, Biotechnol. Bioeng. 23, 431–436 (1981).

    Google Scholar 

  125. I. Chibata, Immobilized Enzymes, pp. 57–59, Wiley, New York (1978).

    Google Scholar 

  126. D. Dinelli, W. Marconi, and F. Morisi, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 227–231, Academic Press, New York (1978).

    Google Scholar 

  127. G. Gregoriadis, N. Engl. J. Med. 295, 706–710 (1976).

    Google Scholar 

  128. G. Gregoriadis, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 218–227, Academic Press, New York (1976).

    Google Scholar 

  129. M. B. Fiddler, C. D. S. Hudson, and R. J. Desnick, Biochim. J. 168, 191–195 (1977).

    Google Scholar 

  130. M. H. Keyes, U.S. Patent No. 3,839,175 (1974).

    Google Scholar 

  131. I. Karube and S. Suzuki, Biochem. Biophys. Res. Commun. 47, 51–54 (1972).

    CAS  Google Scholar 

  132. W. R. Vieth and K. Venkatasubramanian, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 248–250, Academic Press, New York (1976).

    Google Scholar 

  133. A. M. Klibanov, Anal. Biochem. 93, 1–25 (1979).

    CAS  Google Scholar 

  134. H. H. Weetall, Biochim. Biophys. Acta 212, 1–7 (1970).

    CAS  Google Scholar 

  135. W. H. Pitcher, Jr., in: Advanced Biochemical Engineering (T. K. Ghose, A. Fiechter, and N. Blakebrough, eds.), Vol. 10, pp. 1–26, Springer-Verlag, New York (1978).

    Google Scholar 

  136. D. L. Regan, P. Dunnill, and M. D. Lilly, Biotechnol. Bioeng. 16, 333–343 (1974).

    CAS  Google Scholar 

  137. P. W. Carr and L. D. Bowers, Immobilized Enzymes in Analytical and Clinical Chemistry, pp. 249–251, Wiley, New York (1980).

    Google Scholar 

  138. D. Gabel, I. Z. Steinberg, and E. Katchalski, Biochemistry 10, 4661–4669 (1971).

    CAS  Google Scholar 

  139. I. Chibata, Immobilized Enzymes, pp. 168–178, Wiley, New York (1978).

    Google Scholar 

  140. K. A. Hughes, Wall Street Journal (Three Star), East Ed., November 9, 1982, p. 31.

    Google Scholar 

  141. P. Brodelius, in: Industrial Applications of Immobilized Biocatalysts in Advanced Biochemical Engineering (T. K. Ghose, A. Fiechter, and N. Blakebrough, ed.), Vol. 10, pp. 75–109, Springer-Verlag, New York (1978).

    Google Scholar 

  142. P. W. Carr and L. D. Bowers, Immobilized Enzymes in Analytical and Clinical Chemistry, pp. 197–299, Wiley, New York (1980).

    Google Scholar 

  143. B. Danielsson, I. Lundstrom, K. Mosbach, and L. Stiblert, Anal. Lett. 12, 1189–1199 (1979).

    CAS  Google Scholar 

  144. K. Mosbach, U.S. Patent No. 4,021,307 (1977).

    Google Scholar 

  145. L. D. Bowers and P. W. Carr, Thermochim. Acta 10, 129–142 (1974).

    CAS  Google Scholar 

  146. J. C. Weaver, C. L. Cooney, S. P. Fulton, P. Schuler, and S. R. Tannenbaum, Biochim. Biophys. Acta 452, 258–291 (1976).

    Google Scholar 

  147. L. C. Clark, Jr., U.S. Patent No. 3,539,455 (1970).

    Google Scholar 

  148. S. J. Updike and G. P. Hicks, Nature (London) 214, 986–988 (1967).

    CAS  Google Scholar 

  149. B. Mattiasson and B. Danielsson, Carbohydr. Res. 102, 273–282 (1982).

    CAS  Google Scholar 

  150. B. Danielsson, K. Gaold, B. Mattiasson, and K. Mosbach, Anal. Lett. 9,987–1001 (1976).

    CAS  Google Scholar 

  151. W. J. Blaedel and R. A. Jenkins, Anal. Chem. 48, 1240–1247 (1976).

    CAS  Google Scholar 

  152. G. G. Guilbault and E. Hrabankova, Anal. Chem. 42, 1779–1783 (1970).

    CAS  Google Scholar 

  153. M. Nanjo and G. G. Guilbault, Anal. Chim. Acta 75, 167–180 (1975).

    Google Scholar 

  154. G. J. Papariello, A. K. Mukherji, and C. M. Shearer, Anal. Chem. 45, 790–792 (1973).

    CAS  Google Scholar 

  155. G. P. Hicks and J. J. Updike, Anal. Chem. 38, 726–730 (1966).

    CAS  Google Scholar 

  156. M. H. Keyes and R. C. Barabino, in: Enzyme Engineering (E. K. Pye and H. H. Weetall, eds.), Vol. 3, pp. 51–56, Plenum Press, New York (1976).

    Google Scholar 

  157. B. Watson and M. H. Keyes, Anal. Lett. 9, 713–725 (1976).

    CAS  Google Scholar 

  158. B. Watson, D. N. Stifel, and F. E. Semersky, Anal. Chim. Acta 106, 233–242 (1979).

    CAS  Google Scholar 

  159. B. Volesky and C. Emond, Biotechnol. Bioeng. 21, 1251–1276 (1979).

    CAS  Google Scholar 

  160. P. R. Johnson and L. D. Bowers, Anal. Chem. 54, 2247–2250 (1982).

    CAS  Google Scholar 

  161. D. J. Inman and W. E. Hornby, Biochem. J. 137, 25–32 (1974).

    CAS  Google Scholar 

  162. D. R. Senn, P. W. Carr, and L. N. Klatt, Anal. Chem. 48, 954–963 (1976).

    CAS  Google Scholar 

  163. G. Johansson, K. Edstrom, and L. Ogren, Anal. Chim. Acta 85, 55–60 (1976).

    CAS  Google Scholar 

  164. R. C. Barabino, D. N. Gray, and M. H. Keyes, Clin. Chem. (Winston-Salem, N.C.), 24, 1393–1398 (1978).

    CAS  Google Scholar 

  165. L. Ogren and G. Johansson, Anal. Chim. Acta 96, 1–11 (1978).

    CAS  Google Scholar 

  166. D. N. Gray, M. H. Keyes, and B. Watson, Anal. Chem. 49, 1067A–1072A (1977).

    CAS  Google Scholar 

  167. D. N. Gray, and M. H. Keyes, CHEMTECH 7, 642–648 (1977).

    CAS  Google Scholar 

  168. I. Chan, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 491–503, Academic Press, New York (1976).

    Google Scholar 

  169. G. F. Bickerstaff, Int. J. Biochem. 11, 201–206 (1980).

    CAS  Google Scholar 

  170. S. McCraken and E. Meighen, Can. J. Biochem. 57, 834–842 (1979).

    Google Scholar 

  171. J. S. Holcenberg, Ann. Rev. Biochem. 57, 795–812 (1982).

    Google Scholar 

  172. G. Gregoriadis, in: Methods in Enzymology (K. Mosbach, ed.), Vol. 44, pp. 698–709, Academic Press, New York (1976).

    Google Scholar 

  173. G. Gregoriadis, N. Engl. J. Med. 295, 765–770 (1976).

    CAS  Google Scholar 

  174. G. Gregoriadis and E. D. Neerunjun, Eur. J. Biochem. 7, 179–185 (1974).

    Google Scholar 

  175. R. L. Juliano and D. Stamp, Biochem. Biophys. Res. Commun. 63, 651–658 (1975).

    CAS  Google Scholar 

  176. P. Gosh, P. K. Das, and B. K. Bachhawat, Arch. Biochem. Biophys. 213, 266–270 (1982).

    Google Scholar 

  177. L. D. S. Hudson, M. B. Fiddler, and R. J. Desnick, J. Pharmacol. Exp. Ther. 208, 507–514 (1979).

    CAS  Google Scholar 

  178. G. A. Grabowski and R. J. Desnick, in: Enzymes as Drugs (J. C. Holcenberg and J. Roberts, eds.), pp. 167–208, Wiley-Interscience, New York (1981).

    Google Scholar 

  179. I. V. Berezin and S. D. Varfolomeev, Appl. Biochem. Bioeng. 2, 259–290 (1979).

    CAS  Google Scholar 

  180. E. C. Hatchikian and P. Monsan, Biochim. Biophys. Res. Commun. 92,1091–1096 (1980).

    CAS  Google Scholar 

  181. D. A. Lappi, F. E. Stolzenbach, N. O. Kaplan, and M. D. Kamen, Biochem. Biophys. Res. Commun. 69, 878–884 (1976).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Keyes, M.H., Saraswathi, S. (1985). Immobilized Enzymes. In: Gebelein, C.G., Carraher, C.E. (eds) Bioactive Polymeric Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0405-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0405-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0407-5

  • Online ISBN: 978-1-4757-0405-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics