Skip to main content

Application of Radiation Grafting in Reagent Insolubilization

  • Chapter
Bioactive Polymeric Systems
  • 210 Accesses

Abstract

Radiation grafting is shown to be a method with considerable research and industrial potential for the insolubilization of a wide range of organic reagents on polymer surfaces. The principle of the method is outlined in detail and involves radiation-induced copolymerization of a monomer containing an appropriate functional group to a polymer, then attachment of the reagent by subsequent chemical reactions. The relative merits of the two relevant grafting methods for this purpose, namely pre-irradiation and the mutual technique, are evaluated. Typical experimental procedures for each method are discussed. The mutual technique is shown to be more satisfactory for insolubilization reactions because of the lower radiation doses needed to achieve a particular percentage graft, resulting in less radiation damage to the backbone polymer. Variables influencing the efficiency of the mutual grafting method are reviewed, including solvent, dose rate, and dose. Additives for optimizing the grafting yield and properties are considered, including mineral acid and polyfunctional monomers. Methods for reducing competing homopolymerization are summarized. Three examples of the application of the mutual radiation grafting technique for insolubilization reactions are discussed in detail. These include immobilization of enzymes, heterogenization of catalytically active homogeneous metal complexes, and the anchoring of analytical reagents to form ion exchange resins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. R. Marshall and R. B. Merrifield, in: Biochemical Aspects of Reactions on Solid Supports (G. R. Stark, ed.), pp. 111–169, Academic Press, New York (1971).

    Google Scholar 

  2. K. G. Allum, R. D. Hancock, I. V. Howell, R. C. Pitkethly, and P. J. Robinson, Supported transition metal complexes. IV. Rhodium catalysts for the liquid phase hydroformylation of hexene-1,J. Catal. 43, 322–330 (1976).

    Article  CAS  Google Scholar 

  3. K. G. Allum, R. D. Hancock, I. V. Howell, R. C. Pitkethly, and P. J. Robinson, Supported transition metal complexes. V. Liquid phase catalytic hydrogenation of hexene-1,J. Catal 43, 331–338 (1976).

    Article  CAS  Google Scholar 

  4. Y. Kawabata, M. Tanaka, and I. Ogata, Asymmetric hydrogenation by a rhodium catalyst complexed with a phosphinite derived from cellulose, Chem. Lett.1976, 1213–1214.

    Google Scholar 

  5. T. J. Pinnavaia and P. K. Welty, Catalytic hydrogenation of 1-hexene by rhodium complexes in the intracrystal space of a swelling layer lattice silicate, J. Am. Chem. Soc. 97, 3819–3820 (1976).

    Article  Google Scholar 

  6. M. Capka and V. Kavan, Catalytic activity of rhodium (I) complexes containing poly(siloxy)alkyl diphenyl phosphines, Collect. Czech. Chem. Commun. 45, 2100–2107 (1980).

    Google Scholar 

  7. J. L. Garnett, R. S. Kenyon, and M. J. Liddy, Enzyme immobilization by covalent attachment to novel polymer matrices prepared by a radiation grafting technique,J. Chem. Soc. Chem. Commun.1974, 735–736.

    Google Scholar 

  8. I. Kaetsu, M. Kumakura, M. Yoshida, M. Asano, M. Himei, M. Tamura, K. Hayashi, Immobilization of enzymes by radiation, Rad. Phys. Chem. 14, 595–602 (1979).

    Article  CAS  Google Scholar 

  9. A. Charlesby, Atomic Radiation and Polymers, Pergamon Press, Oxford (1960).

    Google Scholar 

  10. A. Chapiro, Radiation Chemistry of Polymeric Systems, Interscience, New York and London (1962).

    Google Scholar 

  11. J. L. Garnett, Grafting, Rad. Phys. Chem. 14, 79–99 (1979).

    Article  CAS  Google Scholar 

  12. J. L. Garnett and N. T. Yen, Acid effects in the radiation grafting of monomers to polymers, particularly polyethylene, ACS Symp. Ser. 121, 243–261 (1980).

    Article  CAS  Google Scholar 

  13. S. Dilli and J. L. Garnett, Radiation-induced reactions with cellulose. IX. Copolymeriza-tion with styrene using a pre-irradiation procedure and the effect of additives on the grafting reaction, Aust. J. Chem. 24, 981–987 (1971).

    Article  CAS  Google Scholar 

  14. G. M. Kline, Analytical Chemistry of Polymers Part1, 3rd Edition, Interscience, New York (1966).

    Google Scholar 

  15. A. Ekstrom and J. L. Garnett, Radiolysis of binary mixtures. Part IV. The effect of polycyclic aromatic additives in methanol, J. Chem. Soc. A1968, 2416–2418.

    Google Scholar 

  16. A. Chapiro, A. M. Jendrychowska-Bonamour, and G. Lelievre, Molecular products in the radiolysis of vinyl monomers, Faraday Discuss Chem. Soc. 63, 134–140 (1977).

    Article  CAS  Google Scholar 

  17. S. Dilli and J. L. Garnett, Radiation-induced reactions with cellulose. III. Kinetics of styrene copolymerization in methanol, J. Appl. Polym. Sci. 11, 859–870 (1967).

    Article  CAS  Google Scholar 

  18. J. L. Garnett, Grafting to cellulose using UV and gamma radiation as initiators, ACS Symp. Ser. 48, 334–360 (1977).

    Article  CAS  Google Scholar 

  19. R. B. Phillips, J. Quere, G. Guiroy, and V. T. Stannett, Modification of pulp and paper by graft copolymerization, Tappi 55, 858–867 (1972).

    CAS  Google Scholar 

  20. R. J. Demint, J. C. Arthur Jr., A. R. Markezich, and W. F. McSherry, Radiation-induced interactions of styrene with cotton, Text. Res. J. 32, 918 (1962).

    Article  CAS  Google Scholar 

  21. A. Hebeish and J. T. Guthrie, The Chemistry and Technology of Cellulosic Copolymers, Springer-Verlag, Berlin and Heidelberg (1981).

    Google Scholar 

  22. G. Odian, T. Acker, and M. Sobel, Accelerated effects in radiation induced graft polymerization, J. Appl. Polym. Sci. 7, 245–250 (1963).

    Article  CAS  Google Scholar 

  23. S. Machi, I. Kamel, and J. Silverman, Effect of swelling on radiation-induced grafting of styrene to polyethylene,J. Polym. Sci. A-1 8, 3329–3337 (1970).

    Article  CAS  Google Scholar 

  24. C. H. Ang, J. L. Garnett, and R. Levot, Use of polyfunctional monomers as additives in accelerating the radiation grafting of styrene to polyolefins, Proceedings of the American Chemical Society, 183rd National Meeting, Las Vegas, Nevada (March 1982).

    Google Scholar 

  25. S. Dilli and J. L. Garnett, A charge-transfer theory for the interpretation and radiation-induced grafting of monomers to cellulose, J. Polym. Sci. A-1 4,2323–2324 (1966).

    Article  CAS  Google Scholar 

  26. A. Ekstrom and J. L. Garnett, Radiolysis of binary mixtures. I. Liquid phase studies with benzene-methanol,J. Phys. Chem. 70, 324–330 (1966).

    Article  CAS  Google Scholar 

  27. D. F. Sangster and A. Davison, Pulse radiolysis of styrene and acrylate monomers, J. Polym. Sci. Symp. Polym. 49, 191–210 (1975).

    Article  CAS  Google Scholar 

  28. J. L. Garnett and J. D. Leeder, Recent developments in grafting of monomers to wool keratin using U.V. and γ-radiation, ACS Symp. Ser. 49, 197–220 (1977).

    Article  CAS  Google Scholar 

  29. H. Barker, J. L. Garnett, R. Levot, and M. A. Long, Use of additives to enhance radiation grafting of monomers to poly(vinyl chloride) and application of these PVC copolymers to immobilization of enzymes and heterogenization of homogeneous metal complexes, J. Macromol Sci., Chem. A12(2), 261–273 (1978).

    Article  CAS  Google Scholar 

  30. J. H. Baxendale and F. W. Mellows, The gamma radiolysis of methanol and methanol solution, J. Am. Chem. Soc. 83, 4720–4726 (1961).

    Article  CAS  Google Scholar 

  31. W. J. Chappas and J. Silverman, The effect of acid on the radiation-induced grafting of styrene to polyethylene, Rad. Phys. Chem. 14, 847–852 (1979).

    Article  CAS  Google Scholar 

  32. J. L. Garnett, S. V. Jankiewicz, and D. F. Sangster, Effect of mineral acid on polymer produced during radiation-induced grafting of styrene monomer, J. Polym. Sci., Polym. Lett. Ed. 20, 171–175 (1982).

    Article  CAS  Google Scholar 

  33. G..Fletcher and J. L. Garnett (unpublished work).

    Google Scholar 

  34. C. H. Ang, J. L. Garnett, R. Levot, and M. A. Long, Polyfunctional monomers as additives for enhancing the radiation copolymerization of styrene to polyethylene, polypropylene and PVC, J. Appl. Polym. Sci. 27, 4893–4897 (1982).

    Article  CAS  Google Scholar 

  35. C. H. Ang, J. L. Garnett, R. Levot, and M. A. Long, Accelerated radiation-induced grafting of styrene to polyolefins in the presence of acid and polyfunctional monomers, J. Polym. Sci., Polym. Lett. Ed. 21, 257–261 (1983).

    Article  CAS  Google Scholar 

  36. C. H. Ang, J. L. Garnett, R. Levot, and M. A. Long, Novel additives for accelerating radiation grafting of monomers to polymers in acid media, Proceedings of the Fourth International Meetings on Radiation Proceeding, Yugoslavia, 1982 (in press).

    Google Scholar 

  37. M. B. Huglin and B. L. Johnson, Role of cations in radiation grafting and homopolymerization, J. Polym. Sci. A-1, 7, 1379–1384 (1969).

    Article  CAS  Google Scholar 

  38. J. L. Garnett and R. S. Kenyon, Acid effects in the styrene comonomer technique for radiation grafting to wool, J. Polym. Sco., Polym. Lett. Ed. 15, 421–425 (1977).

    Article  CAS  Google Scholar 

  39. M. J. Liddy, J. L. Garnett, and R. S. Kenyon, The insolubilization of trypsin by attachment to radiation graft copolymers of polypropylene, J. Polym. Sci., Symp. Polym. 49, 109–116 (1975).

    Article  CAS  Google Scholar 

  40. R. H. Grubbs and E. M. Sweet, Polymer attached catalysts. A comparison between polystyrene attached and homogeneous Rh(I) hydrogenation catalysts, J. Mol. Catal. 3, 259–270 (1977/8).

    Google Scholar 

  41. R. V. Davies, J. Kennedy, E. S. Lane, and J. L. Williams, Synthesis of metal complexing polymers, IV. Polymers containing miscellaneous functional groups, J. Appl. Chem. 9, 368–371 (1959).

    Article  CAS  Google Scholar 

  42. J. R. Parrish and R. Stevenson, Chelating resins from 8-hydroxyquinoline, Anal. Chim. Acta 70, 189–198 (1974).

    Article  CAS  Google Scholar 

  43. F. Vernon and H. Eccles, Chelating ion-exchangers containing 8-hydroxyquinoline as the functional group, Anal. Chim. Acta 63, 403–414 (1973).

    Article  CAS  Google Scholar 

  44. F. Vernon and H. Eccles, Chelating ion-exchangers containing salicyclic acid, Anal. Chim. Acta 72, 331–338(1974).

    Article  CAS  Google Scholar 

  45. C. H. Ang and J. L. Garnett (unpublished work).

    Google Scholar 

  46. N. P. Davis, J. L. Garnett, and R. G. Urquhart, Comparison of photosensitized and γ-ray-induced graft copolymerization of monomers to cellulose, J. Polym. Sci., Symp. Polym. 55, 287–301 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Ang, C.H., Garnett, J.L., Levot, R.G., Long, M.A. (1985). Application of Radiation Grafting in Reagent Insolubilization. In: Gebelein, C.G., Carraher, C.E. (eds) Bioactive Polymeric Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0405-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0405-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0407-5

  • Online ISBN: 978-1-4757-0405-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics