Skip to main content

Taurine, Cysteinesulfinic Acid Decarboxylase and Glutamic Acid in Brain

  • Chapter
Book cover Taurine in Nutrition and Neurology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 139))

Abstract

Despite the intensive studies of many investigators the role of taurine in mammals, other than as a component of taurocholate, is still unknown (2,3,11). The difficulty in assigning a function to taurine results from the large number of organs, actions and conditions with which the compound has been associated, such as neurotransmission (18,29), epilepsy (46,47), development (6,42), nutrition (30), retinal function (23), feline blindness (10,36), mongolism (8), adrenal function (21), cardiac function (9) and others. In addition, specific pharmacologic agonists and antagonists have not been identified, and pathologic changes, other than feline blindness, have not been associated with taurine deficiency or excess. Thus, conclusions cannot be made as yet concerning the function of taurine, and discussions of the importance of this compound still depend upon extrapolation from the descriptive data that are currently available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, H.C., Davison, A.N., and Kaczmarek, L.K., 1971, Subcellular distribution of taurine and cysteinesulphinate decarboxylase in developing rat brain, Biochem. J., 122:759–763.

    PubMed  CAS  Google Scholar 

  2. Barbeau, A., and Huxtable, R.J., eds., “Taurine and Neurological Disorders, Raven Press, New York (1978).

    Google Scholar 

  3. Baskin, S., Kocsis, J.J., and Schaffer, S., “The Action of Taurine on Excitable Tissues,” Spectrum Publications, Philadelphia, in press.

    Google Scholar 

  4. Bergeret, B., and Chatagner, F., 1954, Sur la presence d’acide cysteinesulfinique dans le cerveau du rat normal, Biochim. Biophys. Acta, 14:297.

    Article  PubMed  CAS  Google Scholar 

  5. DeBelleroche, J.S., and Bradford, H.F., 1973, Amino acids in synaptic vesicles from mammalian cerebral cortex: A reappraisal, J. Neurochem., 21:441–451.

    Article  CAS  Google Scholar 

  6. Gaull, G.E., and Rassin, D.K., Taurine and brain development: Human and animal correlates, in: “Neural Growth and Differentiation,” E. Meisami, and M.A.B. Brazier, eds., Raven Press, New York (1979).

    Google Scholar 

  7. Gaull, G.E., Rassin, D.K., Raiha, N.C.R., and Heinonen, K., 1977, Milk protein quantity and quality in low-birth-weight infants. 3. Effects on sulfur amino acids in plasma and urine,J. Pediatr., 90:348–355.

    Article  PubMed  CAS  Google Scholar 

  8. Goodman, H.O., King, J.S., and Thomas, J.J., 1964, Urinary excretion of beta-aminobutyric acid and taurine in mongolism,Nature, 204: 650–652.

    Article  PubMed  CAS  Google Scholar 

  9. Grosso, D.A., and Bressler, R.,1976 Taurine and cardiac physiology, Biochem. Pharmacol, 25:2227–2232.

    Article  PubMed  CAS  Google Scholar 

  10. Hayes, K.C., Carey, R.E., and Schmidt, S.Y., 1975, Retinal degeneration associated with taurine deficiency in the cat, Science, 188: 949–951.

    CAS  Google Scholar 

  11. Huxtable, R.J., and Barbeau, A., eds., “Taurine,” Raven Press, New York (1976).

    Google Scholar 

  12. Jacobsen, J.G., Thomas, L.L., and Smith, L.H., Jr., 1964, Properties and distribution of mammalian L-cysteine sulfinate carboxylyases, Biochim. Biophys. Acta., 85:103–116.

    PubMed  CAS  Google Scholar 

  13. Kaczmarek, L.K., Agrawal, H.C., and Davison, A.N., The biochemistry of taurine in developing rat brain, in: “Inherited Disorders of Sulfur Metabolism,” N.A.J. Carson, and D.N. Raine, eds., Churchill Livingstone, London (1971), pp. 63–69.

    Google Scholar 

  14. Knopf, K., Sturman, J.A., Armstrong, M., and Hayes, K.C., 1978, Taurine: An essential nutrient for the cat, J. Nutrition, 108: 773–778.

    CAS  Google Scholar 

  15. Levi, G., and Morisi, G., 1971, Free amino acids and related compounds in chick brain during development, Brain Res., 26: 131–140.

    Article  CAS  Google Scholar 

  16. Malloy, M.H., Rassin, D.K., Gaull, G.E., and Heird, W.C., Development of taurine metabolism in beagle pups: Effects of taurine-free total parenteral nutrition, Biol. of the Neonate, in press.

    Google Scholar 

  17. Mandel, P., and Mark, J., 1965, The influence of nitrogen deprivation on free amino acids in rat brain, J. Neurochem., 12: 987–992.

    Article  PubMed  CAS  Google Scholar 

  18. Mandel, P., and Pasantes-Morales, H., 1976, Taurine: A putative neurotransmitter, Adv. in Biochem. Psychopharmacol., 15:141–151.

    CAS  Google Scholar 

  19. Martres, M.P., Baudry, M., and Schwartz, J.C., 1975, Histamine synthesis in the developing rat brain: Evidence for a multiple compartmentation, Brain Res., 83: 261–275.

    Article  PubMed  CAS  Google Scholar 

  20. Mussini, M., and Marcucci, F., Free amino acids in brain after treatment with psychotropic drugs, in: “Amino Acid Pools,” J.T. Holden, ed., Elsevier (1962), Amsterdam, pp.486–492.

    Google Scholar 

  21. Nakagawa, K., and Kuriyama, K., 1975, Effect of taurine on alteration in adrenal functions induced by stress, J. Pharmacol. Japan, 25:737–746.

    Article  CAS  Google Scholar 

  22. Nicklas, W.J., Duvoisin, R.C., and Berl, S., 1978, Amino acids in rat striatum lesioned with kainic acid, Trans. Am. Soc. Neurochem., 9:91.

    Google Scholar 

  23. Pasantes-Morales, H., Klethi, J., Urban, P.F., and Mandel, P., 1972, The physiological role of taurine in retina: Uptake and effect on electroretinogram (ERG), Physiol. Chem. and Phys., 4:339–348.

    CAS  Google Scholar 

  24. Pasantes-Morales, H., Mapes, C., Tapia, R., and Mandel, P., 1976, Properties of soluble and particulate cysteine sulfinate decarboxylase of the adult and the developing rat brain, Brain Res., 107: 579–589.

    Article  Google Scholar 

  25. Placheta, P., Singer, E., Schonbeck, G., Heckl, K., and Karobath, M., 1979, Reduction of endogenous level, uptake and release of taurine after intrastriatal kainic acid injection, Neuropharma-cology, 18: 399–402.

    CAS  Google Scholar 

  26. Ransom, D.H., Oertel, W.H., Weise, V.D., Schmeckel, D.E., Krutzsch, H., and Kopin, I.J., 1980, Cysteinesulfinic acid decarboxylase isoenzyme in rat brain-Comparison with liver cysteinesulfinic acid decarboxylase, Soc. Neurosci. Abstr., 6:56.

    Google Scholar 

  27. Rassin, D.K., 1972, Amino acids as putative transmitters: Failure to bind to synaptic vesicles of guinea pig cerebral cortex, J. Neurochem., 19:139–148.

    Article  PubMed  CAS  Google Scholar 

  28. Rassin, D.K., and Gaull, G.E., 1975, Subcellular distribution of enzymes of transmethylation and transsulphuration in rat brain, J. Neurochem., 24:969–978.

    Article  PubMed  CAS  Google Scholar 

  29. Rassin, D.K., and Gaull, G.E., Taurine and other sulfur containing amino acids: Their function in the central nervous system, in: “Amino Acids as Chemical Transmitters,” F. Fonnum, ed., Plenum Publishing Corporation, New York (1978), pp. 571–597.

    Chapter  Google Scholar 

  30. Rassin, D.K., and Gaull, G.E., Taurine: Significance in Human Nutrition, in: “The Action of Taurine on Excitable Tissues,” S. Baskin, S. Schaffer, and J. Kocsis, eds., Spectrum, Philadelphia, in press.

    Google Scholar 

  31. Rassin, D.K., and Sturman, J.A., 1975, Cysteinesulfinic acid decarboxylase in rat brain. Effect of vitamin B6 on soluble and particulate components, Life Sci., 16: 875–882.

    CAS  Google Scholar 

  32. Rassin, D.K., Sturman, J.A., and Gaull, G.E., 1977, Taurine in developing rat brain: Subcellular distribution and association with synaptic vesicles of (35S) taurine in maternal, fetal, and neonatal rat brain, J. Neurochem., 28:41–50.

    Article  PubMed  CAS  Google Scholar 

  33. Rassin, D.K., Sturman, J.A., and Gaull, G.E., 1979, Source of taurine and GABA in cerebrum of developing rhesus monkey, Trans. Am. Soc. Neurochem., 10:144.

    Google Scholar 

  34. Rassin, D.K., Sturman, J.A., and Gaull, G.E., Sulfur amino acid metabolism in the developing rhesus monkey brain: Subcellular studies of taurine, cysteinesulfinic acid decarboxylase, GABA, and glutamic acid decarboxylase, J. Neurochem., in press, 1981.

    Google Scholar 

  35. Rassin, D.K., Sturman, J.A., Hayes, K.C., and Gaull, G.E., 1978, Taurine deficiency in the kitten: Subcellular distribution of taurine and (35S) taurine, Neurochem. Res., 3:401–410.

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt, S.Y., Berson, E.L., and Hayes, K.C., 1976, Retinal degeneration in cats fed casein. 1. Taurine deficiency, Invest. Ophthalmol., 15:47–52.

    PubMed  CAS  Google Scholar 

  37. Saito, K., Immunochemical studies of GAD and GABA-T., in: “GABA in Nervous System Function,” E. Roberts, T.N. Chase, and D.B. Tower, eds., Raven Press, New York (1976), pp. 103–111.

    Google Scholar 

  38. Sieghart, W., and Karobath, M., 1974, Evidence for specific synaptosomal localization of exogenous accumulated taurine, J. Neurochem., 23: 911–915.

    Article  PubMed  CAS  Google Scholar 

  39. Spears, R.M., and Martin, D.L., 1980, Brain regional distribution of glutamate-insensitive cysteinesulfinate decarboxylase activity, Soc. Neurosci. Abstr., 6:443.

    Google Scholar 

  40. Sturman, J.A., Cysteinesulfinic acid decarboxylase activity in the mammalian nervous system: Absence from axons, J. Neurochem., in press, 1981.

    Google Scholar 

  41. Sturman, J.A., and Gaull, G.E., 1975, Taurine in the brain and liver of the developing human and monkey, J. Neurochem., 25: 831–835.

    Article  PubMed  CAS  Google Scholar 

  42. Sturman, J.A., Rassin, D.K., and Gaull, G.E., 1977, Taurine in development, Life Sci., 21: 1–22.

    Article  CAS  Google Scholar 

  43. Tyfield, L.A., and Holton, J.B., 1973, Alterations in sulphur-containing amino acids in rat brain extracts on storage, Clin. Chim. Acta., 45:415–421.

    CAS  Google Scholar 

  44. Van Gelder, N.M., 1978, Taurine, the compartmentalized metabolism of glutamic acid, and the epilepsies, Canad. J. Physiol. Pharmacol., 56:362–374.

    Article  Google Scholar 

  45. Van Gelder, N.M., and Courtois, A., 1972, Close correlation between changing content of specific amino acids in epileptogenic cortex of cats and severity of epilepsy, Brain Res., 43: 477–484.

    Article  PubMed  Google Scholar 

  46. Van Gelder, N.M., Sherwin, A.L., and Rasmussen, T., 1972, Amino acid content of epileptogenic human brain: Focal versus surrounding regions, Brain Res., 40: 385–393.

    Article  PubMed  Google Scholar 

  47. Van Gelder, N.M., Sherwin, A.L., Sacks, C., and Andermann, F., 1975, Biochemical observations following administration of taurine to patients with epilepsy, Brain Res., 94: 297–306.

    Article  PubMed  Google Scholar 

  48. Wood, J.G., McLaughlin, B.J., and Vaughn, J.E., Immunocytochemical localization of GAD in electron microscopic preparations of rodent CNS, in: “GABA in Nervous System Function,” E. Roberts, T.N. Chase, and D.B. Tower, eds., Raven Press, New York (1976), pp. 133–148.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Rassin, D.K. (1982). Taurine, Cysteinesulfinic Acid Decarboxylase and Glutamic Acid in Brain. In: Huxtable, R.J., Pasantes-Morales, H. (eds) Taurine in Nutrition and Neurology. Advances in Experimental Medicine and Biology, vol 139. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0402-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0402-0_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0404-4

  • Online ISBN: 978-1-4757-0402-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics