Skip to main content

Molecular Biology of Intercellular Matrix Macromolecules In Relation to the Cardiovascular System

  • Chapter

Part of the book series: NATO Advanced Science Institutes Series ((NSSA,volume 62))

Abstract

Living tissues are composed of cells and of intercellular matrix. During phylogenesis procaryotes (bacteria) appeared first and they all must have lived as individual organisms. Only the appearance of intercellular matrix macromolecules at the level of the first pluricellular eukaryotes, the first metazoans, the sponges, enabled the association of cells in tissues, of tissues in organs and of organs in an organism. This integrative role is probably the main function of intercellular matrix without which such precise functional association of cells would be impossible. On the other hand, the “invention” of these intercellular matrix macromolecules, about 600 million years ago by the sponges enabled also the emergence of specific macroscopic forms in which these pluricellular organisms can appear. The variation of the quality and quantity of these intercellular matrix macromlecules rendered possible the phylogenetic evolution and the appearance of this multitude of forms in which pluricellular eukaryotic organisms occur. The differentiation of cells is closely related to the differentiation of the intercellular matrix.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BAILEY, A.J., and ROBINS, S.P. (1963a): Development and maturation of the crosslinks in the collagen fibres of skin. In “Frontiers of Matrix Biology” L. Robert (ed) Vol. 1, pp. 130–156, S. Karger, Basel.

    Google Scholar 

  • BAILEY, A.J., and ROBINS, S.P. (1973b): Intra and extra cellular changes in the biosynthesis of collagen with age. In “Mécanismes du Vieillissement Moléculaire et Callulaire” I.N.S.E.R.M. (Paris), Vol. 27, pp. 195–210.

    Google Scholar 

  • BALAZS, E.A. (1970): “Chemistry and Molecular Biology of the Intercellular Matrix” Academic Press, London/New York. Vol. 1, 2, 3.

    Google Scholar 

  • BESSOU, J.P., SERVANT, J.M., and LOISANCE, D. (1979): A biodegradable microarterial graft: scanning electron microscope studies. Int. J. Microsurg. 1: 76–95.

    Google Scholar 

  • BIHARI-VARGA, M., SIMON, J., and GERO, S. (1968): Identification of glycosaminoglycan- -lipoprotein complexes in the atherosclerotic intima by thermoanalytical methods. Acta Biochim. Biophys. Acad. Sci. Hung. 3: 375.

    Google Scholar 

  • BORNSTEIN, P., and SAGE, H. (1980): Structurally distinct collagen types. Ann. Rev. Biochem. 49: 957–1003.

    Article  Google Scholar 

  • BRADBEER, J., JACKSON, D.S., FLETCHER, W.S., KRIPPAEHNE, W., and DUNPHY, M. (1965): Biochemical studies on connective tissue to Dacron arterial prosthesis. J. Surg. Res. 5: 431–436.

    Article  Google Scholar 

  • CARPENTIER, A., LEMAIGRE, G., ROBERT, L., CARPENTIER, S., and DUBOST, CH. (1969): Biological factors affecting long-term results of valvular heterografts. J. Thoracic Cardiovasc. Surg. 58: 467–484.

    Google Scholar 

  • CHVAPIL, M., OWEN, J.A., and CLARK, D.S. (1977): Effect of collagen crosslinking of the rate of resorption of implanted collagen tubing in rabbits. J. Biomed. Res. 11: 297–314.

    Article  Google Scholar 

  • CLAIRE, M., JACOTOT, B., and ROBERT, L. (1976): Characterization of lipids associated with macromolecules of the intercellular matrix of human aorta. Connective Tissue Res. 4: .61–71.

    Article  Google Scholar 

  • DARDIK, H., and DARDIK, I. (1976): Successful arterial substitution with modified human umbilical vein. Ann. Surg. 183: 252–258.

    Article  Google Scholar 

  • GARDAIS, A., PICARD, J., and HERMELIN, B. (1973): Glycosaminoglycan (GAG) distribution in aortic wall from five species. Comp. biochem. Physiol. 44B: 507–515.

    Google Scholar 

  • GREILING, M., STUHLSTATZ, H.W., and GRESSNER, A. (1981): Structure, métabolisme et pathobiochimie des protêoglycannes. In “Maladies du Tissu Conjonctif” F. Delbarre, H. Kaiser and L. Robert (eds) pp. 83–100, Lab. Boehringer Ingelheim, Reims.

    Google Scholar 

  • HAUSCHKA, P.V., and GALLOP, P.M. (1979): Valyl-proline as an index of elastin biosynthesis. Anal. Biochem. 92: 61–66.

    Article  Google Scholar 

  • HORNEBECK, W., and PARTRIDGE, S.M. (1975): Conformation changes in fibrous elastin due to calcium ions. Eur. J. Biochem. 51: 73–78.

    Article  Google Scholar 

  • JACOTOT, B., BEAUMONT, J.L., MONNIER, G., SZIGETI, M., ROBERT, B., and ROBERT, L. (1973): Role of elastic tissue in cholesterol deposition in the arterial wall. Nutr. Metabol. 15: 46–58.

    Article  Google Scholar 

  • KLEINMAN, H.K., MARTIN, G.R., and FISHMAN, P.H. (1979): Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen. Proc. Nat. Acad. Sci. USA 76: 3367–3371.

    Article  Google Scholar 

  • KOHN, R.R. (1977): Heart and cardiovascular system. In “The Biology of Aging” C.E. Finch and L. Hayflic (eds) pp. 281–317, Van Nostrand Reinhold Company, New York.

    Google Scholar 

  • LABAT-ROBERT, J., MENASCHE, M., GODEAU, G., and ROBERT, L. (1980): Fibronectin in eye tissues. Proc. Int. Soc. Eye Research 1: 97.

    Google Scholar 

  • LABAT-ROBERT, J., BIREMBAUT, P., ROBERT, L., and ADNET, J.J. (1981): Modification of fibronectin distribution pattern in solid human tumours. Diagnostic Histopathol. 4: 299–306.

    Google Scholar 

  • LABAT-ROBERT, J. (1981): Structural glycoproteins of connective tissue. In “Connective Tissue Research: Chemistry, Biology and physiologyDeyl and Adam (eds) pp. 233–246, Alan R. Liss, Inc., N.Y.

    Google Scholar 

  • LEVY, K, and PICARD, J. (1976): Glycosaminoglycan biosynthesis in arterial wall. Hexosaminyltransferase and glucuronyltransferase in cell membranes of aortic media-intima. Eur. J. Biochem. 61: 613–619.

    Article  Google Scholar 

  • LOISANCE, D., MOCZAR, M., LEandRI, J., BESSOU, J.P., and DAVID, P. (1981): A new microarterial graft. Trans. Am. Soc. Artif. Intern Organs 27: 401–404.

    Google Scholar 

  • MOCZAR, M., ALLARD, R., ROBERT, L., LOISANCE, D., DEROUETTE, S., and CACHERA, J.P. (1976): Biosynthesis of elastin and other matrix macromolecules in veinous arterial prothesis. Path. Biol., 24: 37–41.

    Google Scholar 

  • MOCZAR, M., GODEAU, G., ROBERT, A.M., MOCZAR, E., LOISANCE, D., and BESSOUS, J.P. (1980): Biodegradable prosthesis from rat aorta. Pathol. Biol, 28: 517–524.

    Google Scholar 

  • MOCZAR, M., WEGROWSKI, J., LOISANCE, D., and DAVID, P. (1981): Biosynthetic labelling of glycosaminoglycans in subendothelial hyperplasia in heterologous vascular prosthesis. Biochem. Soc. Transactions 9: 545–546.

    Google Scholar 

  • OXLUND, H., andREASSEN, T.T., and VIIDIK, A. (1982): The role of collagen and elastin in the biophysical properties of aorta. Res. Com. 6th Int. Symp. on Atherosclerosis, Berlin (No 623).

    Google Scholar 

  • PARTRIDGE, S.M. (1970): Isolation and characterization of elastin, in “Chemistry and Molecular Biology of the Intercellular Matrix” E.A. Balazs (ed) pp. 593–616, Academic Press, London/N.Y.

    Google Scholar 

  • ROBERT, A.M., ROBERT, B., and ROBERT, L. (1970): Chemical and physical properties of structural glycoproteins. In “Chemistry and Molecular Biology of the Intercellular Matrix” E.A. Balazs (ed) vol. 1, pp. 237–242, Academic Press, London/N.Y.

    Google Scholar 

  • ROBERT, A.M., MOCZAR, M., GODEAU, G., ALLARD, R., MOCZAR, E., ROBERT, L., LOISANCE, D., DEROUETTE, S., and CACHERA, J.P. (1976): Biochemical studies on Dacron arterial prosthesis. Path. Biol. 24: 42–47.

    Google Scholar 

  • ROBERT, L., MOCZAR, E., and ROBERT, A.M., French DRME Patent NO EN 73–25–701.

    Google Scholar 

  • ROBERT, L., and ROBERT, A.M. (1980): Elastin, elastase and arteriosclerosis. In, “Frontiers of Matrix Biology” L. Robert (ed) Vol. 8, pp. 130–173, S. Karger, Basel.

    Google Scholar 

  • ROBERT, L., HORNEBECK, W., and ROBERT, A.M. (1982): Role of connective tissue in the arterio-atherosclerotic process. Interest of a cell-matrix directed pharmacology. In “Atherosclerosis. VI” G. Schettler and G. Schlierf (eds) Springer-Verlag, N.Y./ Heidelberg/Berlin. In print.

    Google Scholar 

  • ROBERT, L., and MOCZAR, M. (1981): Structural glycoproteins. In “Structural and Contractile Proteins” Vol. 82, Part A “Extracellular Matrix”, L.W. Cunningham and D.W. Frederiksen (eds) pp. 839–852, Academic Press, N.Y.

    Google Scholar 

  • ROBERT, L., and MOCZAR, M. (1982): Age changes of proteoglycans and glycosaminoglycans. In “Glycosaminoglycans and proteoglycans in physiological and pathological processes of body systems”, R. Varma (ed), S. Karger, Basel, in print.

    Google Scholar 

  • ROSENBERG, N., MARTINES, A., SAWYER, P.N., WESELOWSKI, S., POSTETHWAIT, R.W., and DILLON, M. (1966): Tanned collagen arterial prosthesis of bovine carotidis origin in man. Ann. Surg. 164: 274.

    Google Scholar 

  • SAGE, E.H., and GRAY, W.R. (1976): Evolution of elastin structure. In “Elastin and Elastic Tissue” L.B. Sandberg, W.R. Gray and C. Franzblau (eds) Vol. 79 Adv. Exper. Med. Biol., pp. 291–312., Plenum Press, N.Y./London.

    Google Scholar 

  • SRINIVASAN, S.R., YOST, K., RADHAKRISHNAMURTHY, B., DALFERES, E.R., and BERENSON, G.S. (1980): Lipoprotein-hyaluronate associations in human aorta fibrous plaque lesions. Atherosclerosis 36: 25–37.

    Article  Google Scholar 

  • STREHLER, B.L. (1977): “Time, Cells and aging” p. 144, Academic Press, New York.

    Google Scholar 

  • TANZER, M.L. (1976): Cross-linking. In “Biochemistry of Collagen”, G.N. Ramachandran and A.H. Reddi, pp. 137–162, Plenum Press, N.Y./London.

    Google Scholar 

  • VIIDIK, A. (1973): Rheology of skin with special reference to age-related paramaters and their possible correlation to structure. In “Frontiers of Matrix Biology” L. Robert (ed), pp. 157–189, Bol. 1, S. Karger, Basel.

    Google Scholar 

  • WIENER, S., WESELOWSKI, S., URIVETZKY, M., and MEILMAN, E. (1973): Bioshythesis of aortic vascular graft tissue in the pig. Res. Comm. Chem. Pathol. Pharmacol. 173–181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Robert, L., Moczar, M. (1983). Molecular Biology of Intercellular Matrix Macromolecules In Relation to the Cardiovascular System. In: Dintenfass, L., Julian, D.G., Seaman, G.V.F. (eds) Heart Perfusion, Energetics, and Ischemia. NATO Advanced Science Institutes Series, vol 62. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0393-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0393-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0395-5

  • Online ISBN: 978-1-4757-0393-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics