Skip to main content

Part of the book series: NATO Conference Series ((MARS,volume 13))

Abstract

The perception that the euphotic zone of nutrient-impoverished oceanic waters is a steady state system has been based, to a large extent, on the choice of temporal and spatial scales upon which the pertinent biological and chemical measurements typically are made. For example, subsamples obtained from well-mixed, large volume samples (liters to tens of liters) commonly are used at sea both for a variety of analytical measurements and for long-term (tens of hours) bottle incubations to determine rates of primary production and nutrient turnover. The results of such measurements consistently demonstrate that nutrient concentrations in oligotrophic surface waters are below detection limits (Carpenter and McCarthy, 1975; McCarthy and Carpenter, 1979), and that both standing stocks of primary and secondary producers and rates of biological activity are uniformly low (Eppley et al., 1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alldredge, A.L., and Cox, J.L., 1982, Primary productivity and chemical composition of marine snow in surface waters of the Southern California Bight, J. Mar. Res., 40: 517.

    Google Scholar 

  • Alldredge, A.L., and Silver, M.W., 1982, Abundance and production rates of floating diatom mats (Rhizosolenia castracanei and R. imbricata var. shrubsolei) in the Eastern Pacific Ocean, Mar. Biol. 66: 83.

    Article  Google Scholar 

  • Allen, T.F.H., 1977, Scale in microscopic algal ecology: a neglected dimension, Phycologia, 16:253.

    Article  Google Scholar 

  • Azam, F., In press, Measurement of growth of bacteria in the sea and the regulation of growth by environmental conditions, in: “Heterotrophic Activity in the Sea,” J. Hobbie and P. J. LeB. Williams, eds., Plenum Press, New York.

    Google Scholar 

  • Azam, F., and Hodson, R.E., 1977, Size distribution and activity of marine microheterotrophs, Limnol. Oceanogr., 22: 492.

    Article  Google Scholar 

  • Barsdate, B.J., Prentki, R.T., and Fenchel, T., 1974, Phosphorus cycle of model ecosystems: significance for decomposer food chains and effect of bacterial grazers, Oikos, 25: 239.

    Article  Google Scholar 

  • Baylor, E.R., Sutcliffe, W.H., and Hirschfield, D.S., 1962, Adsorption of phosphate onto bubbles, Deep Sea Res., 9:120.

    Google Scholar 

  • Beers, J.R., Reid, F.M.H., and Stewart, G.L., 1982, Seasonal abundance of the microplankton population in the North Pacific central gyre, Deep Sea. Res., 29:227.

    Article  Google Scholar 

  • Berman, T., 1975, Size fractionation of natural aquatic populations associated with autotrophic and heterotrophic carbon uptake, Mar. Biol., 33:215.

    Article  Google Scholar 

  • Bishop, J.K.B., Ketten, D.R. and Edmond, J.M., 1978, The chemistry biology and vertical flux of particulate matter from the upper 400 m of the Cape Basin in the southeast Atlantic ocean, Deep Sea Res., 25:1121.

    Article  Google Scholar 

  • Bishop, J.K.B., Collier, R.W., Ketten, D.R., and Edmond, J.M., 1980, The chemistriy, biology and vertical flux of particulate matter from the upper 1500 m of the Panama Basin, Deep Sea Res., 27:615.

    Article  Google Scholar 

  • Booth, B.C., Lewin, J. and Norris, R.E., 1982, Nanoplankton species predominant in the subartic Pacific in May and June 1978, Deep Sea Res., 29:185.

    Article  Google Scholar 

  • Brand, L.E., and Guillard, R.R.L., 1981, The effects of continuous light and light intensity on the reproduction rates of twenty-two species of marine phytoplankton, J. exp. mar. Biol. Ecol., 50:119.

    Article  Google Scholar 

  • Caperon, J., Schell, D., Hirota, T., and Laws, E., 1979, Ammonium excretion rates in Kaneohe Bay, Hawaii, measured by a 15N isotope dilution technique, Mar. Biol., 54: 33.

    Article  Google Scholar 

  • Carder, K.L., 1979, Holographic microvelocimeter for use in studying ocean particle dynamics Opt. Eng., 18: 524.

    Google Scholar 

  • Carder, K.L., Steward, R.G., and Betzer, P.R., 1982, In situ holographic measurements of the sizes and settling rates of oceanic particulates, J. Geophys. Res., 87:5681.

    Article  Google Scholar 

  • Caron, D.A., Davis, P.G., Madin, L.P., and Dieburth, J. McN., 1982 Heterotrophic bacteria and bacterivorous protozoa in oceanic macroaggregates, Science.

    Google Scholar 

  • Carpenter, E.J., and McCarthy, J.J., 1975, Nitrogen fixation and uptake of combined nitrogenous nutrients by Oscillatoria (Trichodesmium) thiebautii in the western Sargasso Sea, Limnol. Oceanogr., 20: 389.

    Article  Google Scholar 

  • Carpenter, E.J., and Price, C.C., 1977, Nitrogen fixation, distribution, and production of Oscillatoria (Trichodesmium) spp. in the western Sargasso and Caribbean Seas, Limnol. Oceanogr., 22: 389.

    Google Scholar 

  • Carpenter, E.J., Harbison, G.R., Madin, L.P., Swanberg, N.R., Biggs, D.C., Hulbert, E.M., McAlister, V.L., and McCarthy, J.J., 1977, Rhizosolenia mats, Limno1. Oceaogr., 22: 739.

    Article  Google Scholar 

  • Cauwet, G., 1978, Organic chemistry of sea water particulates. Concepts and developments, Oceanologica Acta, 1: 99.

    Google Scholar 

  • Churchward, G., Bremer, H. and Young, R., 1982, Macromolecular composition of bacteria, J. Theor. Biol., 94: 651.

    Article  Google Scholar 

  • Cooper, L.H.N., 1933, Chemical constituents of biological importance in the English Channel, Pt. I. Phosphate, silicate, nitrate, nitrite, ammonia, J. Mar. Biol. Assoc. U.K., 23: 171.

    Google Scholar 

  • Curds, C.R., 1971, A computer-simulation study of predator-prey relationships in a single-stage continuous-culture system, Water Res., 5: 793.

    Article  Google Scholar 

  • Dawson, M.P., Humphrey, B.A., and Marshallm K.C., 1981, Adhesion: A tactic in the survival strategy of a marine vibrio during starvation, Current Microbiol., 6: 195–199.

    Article  Google Scholar 

  • Ellwood, D.C., Keevil, C.W., Marsh, P.D., Brown, C.M., and Wardell, J.N., 1982, Surface-associated growth, Phil. Trans. R. Soc. Lond., B297: 517.

    Google Scholar 

  • Eppley, R.W., 1972, Temperature and phytoplankton growth in the sea, Fish. Bull., 70:1063.

    Google Scholar 

  • Eppley, R.W., and Peterson, B.J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282: 677.

    Article  Google Scholar 

  • Eppley, R.W., Renger, E.H., Venrick, E.L., and Mullin, M.M., 1973, A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean, Limnol. Oceanogr., 18: 534.

    Article  Google Scholar 

  • Esener, A.A., Roels, J.A., and Kossen, N.W.F., 1982, Dependence of the elemental composition of K. pneumoniae on the steady-state specific growth rate, Biotechnol. Bioeng., 24: 1445.

    Article  Google Scholar 

  • Fenchel, T., 1982a, Ecology of Heterotrophic microflagellates. I. Some important forms and their functional morphology, Mar. Ecol. Prog. Ser. 8:211.

    Article  Google Scholar 

  • Fenchel, T., 1982b, Ecology of heterotrophic microflagellates. II. Bioenergetics and growth, Mar. Ecol. Prog. Ser., 8: 225.

    Article  Google Scholar 

  • Fenchel, T., and Harrison P., 1976, The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus, in: “The Role of Terrestrial and Aquatic Organisms in Decomposition Processes,” J.M. Anderson and A. Macfadyen, eds., Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Gallager, S.M., and Mann, R., 1981, The effect of varying carbon/ nitrogen ratio in the phytoplankter Thalassiosira pseudonana (3H) on its food value to the bivalve Tapes Japonica, Aquaculture, 26: 95.

    Article  Google Scholar 

  • Gavis, J., 1976, Munk and Riley revisited: nutrient diffusion transport and rates of phytoplankton growth, J. Mar. Res., 34: 161.

    Google Scholar 

  • Glibert, P.M., 1982, Regional studies of daily, seasonal, and size fraction variability in ammonium remineralization, Mar. Biol., 70: 209.

    Article  Google Scholar 

  • Glibert, P.M. and Goldman, J.C., 1981, Rapid ammonium uptake by marine phytoplankton, Mar. Biol. Lett., 2: 25.

    Google Scholar 

  • Goldman, J.C., 1980, Physical processes, nutrient availability, and the concept of relative growth rate in marine phytoplankton ecology, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed. Plenum Press, New York.

    Google Scholar 

  • Goldman, J.C., and Glibert, P.M., 1982, Comparative rapid ammonium uptake by four species of marine phytoplankton, Limnol. Oceanogr., 27: 814.

    Article  Google Scholar 

  • Goldman, J.C., and Stanley, H.I., 1974, Relative growth of different species of marine algae in wastewater-seawater mixtures, Mar. Biol., 28: 17.

    Article  Google Scholar 

  • Goldman J.C., and McCarthy, J.J., 1978, Steady state growth and ammonium uptake of a fast-growing marine diatom, Limnol. Oceanogr., 23: 695.

    Article  Google Scholar 

  • Goldman, J.C., McCarthy, J.J., and Peavey, D.G., 1979, Growth rate influence on the chemical composition of phytoplankton in oceanic waters, Nature, 279:210.

    Article  Google Scholar 

  • Goldman, J.C., Taylor, C.D., and Glibert, P.G., 1981a, Nonlinear time-course uptake of carbon and ammonium by marine phytoplankton, Mar. Ecol. Prog. Ser., 6: 137.

    Article  Google Scholar 

  • Goldman, J.C., Dennett, M.R., and Riley, C.B., 1981b, Inorganic carbon sources and biomass regulation in intensive microalgal cultures, Biotechnol. Bioeng., 23: 995.

    Article  Google Scholar 

  • Gordon, D.R. Jr., 1970, A microscopic study of organic particles in the North Atlantic Ocean, Deep Sea Res., 17:175.

    Google Scholar 

  • Gordon, D.C. Jr., Wangersky, P.J., and Sheldon, R.W., 1979, Detailed observations on the distribution and composition of particulate organic material at two stations in the Sargasso Sea, Deep Sea Res., 26: 1083.

    Article  Google Scholar 

  • Haas, L.W., and Webb, K.L., 1979, Nutritional mode of several non- pigmented microflagellates from the York River Estuary, Virginia, J. exp. mar. Biol. Ecol., 39: 125.

    Article  Google Scholar 

  • Harris, G.P., 1980, Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models, and management, Can. J. Fish. Aquat. Sci., 37: 877.

    Article  Google Scholar 

  • Harris, R.H., and Mitchell, R., 1973, The role of polymers in microbial aggregations, Ann. Rev. Microbiol., 27: 27.

    Article  Google Scholar 

  • Harrison, W.G., 1978, Experimental measurements of nitrogen re-mineralization in coastal waters, Limnol. Oceanogr., 23: 684.

    Article  Google Scholar 

  • Harrison, W.G., 1980, Nutrient regeneration and primary production in the sea, in: “Primary Productivity in the Sea,” P.G. Falkowski, ed., Plenum Press, New York.

    Google Scholar 

  • Harvey, G.W., 1966, Microlayer collection from the sea surface: a new method and initial results, Limno1. Oceanogr., 11: 608.

    Article  Google Scholar 

  • Herbert, D., Elsworth, R., and Telling, R.C., 1956, The continuous culture of bacteria; a theoretical and experimental study, J. Gen. Microbiol., 14: 601.

    Google Scholar 

  • Herbland, A., and LeBouteiller, A., 1981, The size distribution of phytoplankton and particulate organic matter in the Equatorial Atlantic Ocean: Importance of ultraseston and consequences, J. Plankton Res., 3: 659.

    Article  Google Scholar 

  • Jackson, G.A., 1980, Phytoplankton growth and Zooplankton grazing in oligotrophic waters, Nature, 284: 439.

    Article  Google Scholar 

  • Jannasch, H.W., 1979, Microbial ecology of aquatic low nutrient habitats, in: “Strategies of Microbial Life in Extreme Environments”, M. Shilo, ed., Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Jannasch, H.W., and Pritchard, P.H., 1972, The role of inert particulate matter in the activity of aquatic microorganisms, Mem Ist Ital. Idrobiol. Suppl., 29: 289.

    Google Scholar 

  • Johannes, R.E., 1965, The influence of marine protozoa on nutrient regeneration, Limnol. Oceanogr., 10: 434.

    Article  Google Scholar 

  • Johnson, B.D., 1976, Nonliving organic particle formation from bubble dissolution, Limnol. Oceanogr., 21: 444.

    Article  Google Scholar 

  • Johnson, B.D., and Cooke, R.C., 1980, Organic particle and aggregate formation resulting from the dissolution of bubbles in sea-water, Limnol. Oceanogr., 25: 653.

    Article  Google Scholar 

  • Johnson, P.W., and Sieburth, J. McN., 1979, Chroococcoid cyano-bacteria in the sea: A ubiquitous and diverse phototrophic biomass, Limnol. Oceanogr., 24: 928.

    Article  Google Scholar 

  • Kelley, J.C., 1976, Sampling the sea, in: “The Ecology of the Seas,” D.H. Cushing and J.J. Walsh, eds., W.B. Saunders Co, Philadelphia.

    Google Scholar 

  • Ketchum, B.H., Ryther, J.H., Yentsch, C.S., and Corwin, N., 1958, Productivity in relation to nutrients, Cons. Internat. Explor. Mer. Rapp. and Proces. Verb., 144: 132.

    Google Scholar 

  • Kjelleberg, S., Humphrey, B.A., and Marshall, K.C., 1982, Effect of interfaces on small, starved marine bacteria, Appl. Environ. Microbiol., 43: 1166.

    Google Scholar 

  • Kimor, B. 1981, The role of phagotrophic dinoflagellates in marine ecosystems, Kieler Meeresforsch. Sondern., 5: 164.

    Google Scholar 

  • Koch, A.L., 1971, The adaptive responses, of Escherichia coli to a feast or famine existence, Adv. Microbiol. Ecol., 6: 147.

    Google Scholar 

  • Koch, A.L., 1979, Microbial growth in low concentrations of nutrients, in: “Strategies of Microbial Life in Extreme Environments,” M. Shilo, ed., Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Larsen, D.H., and Dimmick, R.L., 1964, Attachment and growth of bacteria on surfaces of continuous-culture vessels, J. Bacteriol. 88: 1380.

    Google Scholar 

  • Laws, E.A., and Bannister, T.T., 1980, Nutrient- and light-limited growth of Thalassiosira fluviatilis in continuous culture, with implications for phytoplankton growth in the ocean, Limnol. Oceanogr., 25: 457.

    Article  Google Scholar 

  • Lehman, J.T., and Scavia, D., 1982a, Microscale patchiness of nutrients in plankton communities, Science, 216: 729.

    Article  Google Scholar 

  • Lehman, J.T., and Scavia, D., 1982b, Microscale nutrient patches produced by Zooplankton, Proc. Natl. Acad. Sci. USA, 79: 5001.

    Article  Google Scholar 

  • Linley, E.A.S., and Field, J.G., 1982, The nature and ecological significance of bacterial aggregation in a nearshore upwelling ecosystem, Estuar. Coast. Shelf Sci., 14:1

    Article  Google Scholar 

  • Maestrini, S.Y., and Bonin, D.J., 1981, Competition among phytoplankton based on inorganic macronutrients, in: “Physiological Bases of Phytoplankton Ecology,” T. Platt, ed., Bulletin 210, Canadian Bulletin of Fisheries and Aquatic Sciences, Ottawa.

    Google Scholar 

  • Marshall, K.C., 1976, “Interfaces in Microbial Ecology,” Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • McCarthy, J.J., and Carpenter, E.J., 1979, Oscillatoria (Trichodesmium) thiebautii (cyanophyta) in the central North Atlantic Ocean, J. Phycol., 15: 75.

    Article  Google Scholar 

  • McCarthy, J.J., and Goldman, J.C., 1979, Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters, Science, 203: 670.

    Article  Google Scholar 

  • Manzel, D.W., 1974, Primary productivity, dissolved and particulate organic matter, and the sites of oxidation of organic matter, in: “The Sea, Vol. 5, Marine Chemistry,” E.D. Goldberg, ed., John Wiley and Sons, New York.

    Google Scholar 

  • Morris, I., Smith, A.E., and Glover, H.E., 1981, Products of photosynthesis in phytoplankton off the Orinoco River and in the Caribbean Sea, Limnol. Oceanogr., 26: 1034.

    Article  Google Scholar 

  • Norkrans, B., 1980, Surface microlayers in aquatic environments, Adv. Microbial Ecol., 4: 51.

    Google Scholar 

  • Paerl, H.W., 1975, Microbial attachment to particles in marine and freshwater ecosystems, Microb. Ecol., 2: 73.

    Article  Google Scholar 

  • Parker, R.R., and Tranter, D.J., 1981, Estimation of algal standing stock and growth parameters using in vivo fluorescence, Aust. J. Mar. Freshwater Res., 32:629.

    Article  Google Scholar 

  • Platt, T., and Denman, K., 1980, Patchiness in phytoplankton distribution, in: “The Physiological Ecology of Phytoplankton,” I Morris, ed., Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Poindexter, J.S., 1981, Oligotrophy. Fast and famine existence, Adv. Microbial Ecol., 5: 63.

    Google Scholar 

  • Pomeroy, L.R., 1974, The ocean’s food web, a changing paradigm, BioScience, 24: 499.

    Article  Google Scholar 

  • Pomeroy, L.R. and Johannes, R.E., 1966, Total plankton respiration, Deep Sea Res., 13: 971.

    Google Scholar 

  • Pomeroy, L.R. and Johannes, R.E., 1968, Occurance and respiration of ultraplankton in the upper 500 meters of the ocean, Deep Sea Res., 15: 381.

    Google Scholar 

  • Raymont, J.E.G., and Adams, M.N.E., 1958, Studies on the mass ulture of Phaeodactylum, Limnol. Oceanogr., 3: 119.

    Article  Google Scholar 

  • Redfield, A.C., Smith H.P., and Ketchum, B., 1937, The cycle of organic phosphorus in the Gulf of Maine, Biol. Bull., 73: 421.

    Article  Google Scholar 

  • Rifkin, R.B., and Swift, E., 1982, Phosphate uptake by the oceanic dinoflagellate Pyrocystis noctiluca, J. Phycol., 18: 113.

    Article  Google Scholar 

  • Riley, G.A., 1963, Organic aggregates in seawater and the dynamics of their formation and utilization, Limnol. Oceanogr. 8: 372.

    Article  Google Scholar 

  • Riley, G.A., 1970, Particulate organic matter in sea water, Adv. mar. Biol., 8: 1.

    Article  Google Scholar 

  • Rutter, P.R., 1980, The physical chemistry of the adhesion of bacteria and other cells, in: “Cell Adhesion and Motility,” A.S.G. Curtis and J.D. Pitts, eds, Cambridge University Press, London.

    Google Scholar 

  • Seki, H., 1972, The role of microorganisms in the marine food chain with reference to organic aggregate, Mem. 1st. Ital. Idrobiol. Suppl., 29: 245.

    Google Scholar 

  • Shanks, A.L., and Trent, J.D., 1979, Marine snow: Microscale nutrient patchiness, Limnol. Oceanogr., 24:850

    Article  Google Scholar 

  • Sharp, J.H., Perry, M.J., Renger, E.H., and Eppley, R.W., 1980, Phytoplankton rate processes in the oligotrophic waters of the central North Pacific Ocean, J. Plankton Res., 2: 335.

    Article  Google Scholar 

  • Sheldon, R.W., Prakash, A., and Sutcliffe, W.H. Jr., 1972, The size distribution of particles in the ocean, Limnol. Oceanogr., 17: 327.

    Article  Google Scholar 

  • Sherr, B.F., Sherr, E.B., and Berman, T., 1982, Decomposition of organic detritus: A selective role for microflagellate protozoa, Limnol. Oceanogr., 27: 765.

    Article  Google Scholar 

  • Sieburth, J. McN., 1979, “Sea Microbes,” Oxford University Press, New York.

    Google Scholar 

  • Sieburth, J.McN. Smetacek, V., and Lenz, J., 1978, Pelagic ecosystem structure: Heterotrophic compartments of the plankton and their relationship to plankton size fractions, Limnol. Oceanogr., 23: 1256.

    Article  Google Scholar 

  • Silver, M.W., and Alldredge, A.L., 1981, Bathypelagic marine snow: deep-sea algal and detrital community, J. Mar. Res., 39: 501.

    Google Scholar 

  • Silver, M.W., Shanks, A.L., and Trent, J.D., 1978, Marine snow: Microplankton habitat and source of small-scale patchiness in pelagic populations, Science, 201: 371.

    Article  Google Scholar 

  • Sorokin, Y.I., 1981, Microheterotrophic organisms in marine ecosystems, in: “Analysis of Marine Ecosystems,” A.R. Longhurst, ed., Academic Press, London.

    Google Scholar 

  • Spicer, C.C., 1955, The theory of bacterial constant growth apparatus, Biometrics, 11: 225.

    Article  Google Scholar 

  • Sutcliffe, W.H., Baylor, E.R., and Menzel, D.W., 1963, Sea surface chemistry and Langmuir circulation, Deep Sea Res., 10: 233.

    Google Scholar 

  • Swift, E., Stuart, M., and Meunier, V., 1976, The in situ growth rates of some deep-living oceanic dinoflagellates: Pyrocystis fusiformis and Pyrocystis noctiluca, Limnol. Oceanogr., 21: 418.

    Article  Google Scholar 

  • Throndsen, J., 1979, The significance of ultraplankton in marine primary production, Acta Bot. Fennica, 110: 53.

    Google Scholar 

  • Topiwala, H.H., and Hamer, G., 1971, Effect of wall growth in steady-state continuous cultures, Biotechnol. Bioeng., 13: 919.

    Article  Google Scholar 

  • Trent, J.D., Shanks, A.L. and Silver, M.W., 1978, In situ and laboratory measurements on macroscopic aggregates in Monterey Bay, California, Limnol. Oceanogr., 23: 626.

    Article  Google Scholar 

  • Turpin, D.H., Parslow, J.S., and Harrison, P.J., 1981, On limiting nutrient patchiness and phytoplankton growth: A conceptual approach, J. Plankton Res., 3: 421.

    Article  Google Scholar 

  • van den Ende, P., 1973, Predator-prey interactions in continuous culture, Science, 181: 562.

    Article  Google Scholar 

  • Wangersky, P.J., 1977, The role of particulate matter in the productivity of surface waters, Helgolander wiss. Meeresunters, 30: 546.

    Article  Google Scholar 

  • Wangersky, P.J., 1978, The distribution of particulate organic matter in the oceans: ecological implications, Int. Revue ges. Hydrobiol., 63: 567.

    Article  Google Scholar 

  • Waterbury, J.B., Watson, S.W., Guillard, R.R.L., and Brand, L.E., 1979, Widespread occurance of a unicellular, marine, planktonic, cyanobacterium, Nature, 277: 293.

    Article  Google Scholar 

  • Wheeler, P.A., Glibert, P.G., and McCarthy, J.J., 1982, Ammonium uptake and incorporation by Chespeake Bay phytoplankton: Short-term uptake kinetics, Limnol. Oceanogr., 27: 1113.

    Google Scholar 

  • Wiebe, W.J., and Pomeroy, L.R., 1972, Microorganisms and their association with aggregates and detritus in the sea: a microscopic study, Mem. Ist. Ital. Idrobiol. Suppl., 29: 325.

    Google Scholar 

  • Williams, P.J., LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch., Sondeh., 5:1.

    Google Scholar 

  • Williams, P.J. LeB. and Muir, L.R., 1981, Diffusion as a constraint on the biological importance of microzones in the sea, in: “Ecohydrodynamics”, J.C.J. Nihoul, ed. Elsevier Scientific Publishing Co., Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Goldman, J.C. (1984). Oceanic Nutrient Cycles. In: Fasham, M.J.R. (eds) Flows of Energy and Materials in Marine Ecosystems. NATO Conference Series, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0387-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0387-0_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0389-4

  • Online ISBN: 978-1-4757-0387-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics