Skip to main content

Thermodynamics of the Pelagic Ecosystem: Elementary Closure Conditions for Biological Production in the Open Ocean

  • Chapter
Flows of Energy and Materials in Marine Ecosystems

Part of the book series: NATO Conference Series ((MARS,volume 13))

Abstract

In the pelagic zone of the ocean, the primordial ecological event is the conversion by phytoplankton of radiant energy from the sun into biochemical energy. The rate at which this process proceeds is called the primary production of the ocean. In spite of its fundamental importance and its profound significance for the tropho-dynamics of the marine ecosystem, the absolute magnitude of primary production in the ocean is still uncertain to within a factor of ten (Eppley, 1980). More than 50 years of research effort have gone into its measurement, including 30 years with a high precision isotopic tracer technique: but instead of converging on some generally accepted figures, the estimates continue to diverge (Steemann Nielsen, 1954; Platt and Subba Rao, 1975; Eppley and Peterson, 1979; Peterson, 1980). It has become conventional, if not ritualistic, for any inconsistencies in independent estimates to be laid at the door of the 14C method (Williams, 1981). The technique with the highest potential precision is therefore in danger of losing (has lost?) credibility on the grounds of accuracy. If primary production estimates up to two orders of magnitude higher than the 14C figures can be given serious consideration in the literature (Sheldon and Sutcliffe, 1978; Gieskes et al., 1979; Johnson et al., 1981; Shulenberger and Reid, 1981) why not three orders or four orders higher?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atlas, D., and Bannister, T. T., 1981, Dependence of mean spectral extinction coefficient of phytoplankton on depth, water color, and species, Limnol.Oceanogr., 25:157.

    Article  Google Scholar 

  • Bannister, T. T., 1974, Production equations in terms of chlorophyll concentration, quantum yield and upper limit to production, Limnol.Oceanogr., 19:1.

    Article  Google Scholar 

  • Beers, J. R., Reid, F. M. H., and Stewart, G. L., 1975, Microplankton of the North Pacific central gyre. Population structure and abundance, June 1973, Int.Revue Ges.Hydrobiol, 60:607.

    Google Scholar 

  • Beers, J. R., Reid, F. M. H., and Stewart, G. L., 1982, Seasonal abundance of the microplankton population in the North Pacific central gyre, Deep-Sea Res., 29:227.

    Article  Google Scholar 

  • Blasco, D., Packard, T. T., and Garfield, P. C., 1982, Size dependence of growth rate, respiratory electron transport system activity, and chemical composition in marine diatoms in the laboratory, J.Phycol., 18:58.

    Article  Google Scholar 

  • Carpenter, E. J., and McCarthy, J. J., 1975, Nitrogen fixation and uptake of combined nitrogenous nutrients by Oscillatoria (Trichodesmium) thieboutii in the western Sargasso Sea, Limnol.Oceanogr., 20:389.

    Article  Google Scholar 

  • Carpenter, E. J., and Price, IV C. C., 1977, Nitrogen fixation, distribution, and production of Oscillatoria (Trichodesmium) spp. in the western Sargasso Sea and Caribbean Sea, Limnol. Oceanogr., 22:60.

    Google Scholar 

  • Conover, R. J., 1978, Transformation of organic matter, in: “Marine Ecology,” O. Kinne, ed., John Wiley and Sons, London.

    Google Scholar 

  • Dugdale, R. C., and Goering, J. J., 1967, Uptake of new and regenerated forms of nitrogen in primary productivity, Limnol. Oceanogr., 12:196.

    Google Scholar 

  • Eppley, R. W., 1980, Estimating phytoplankton growth rates in the central oligotrophic oceans, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Plenum Press, New York.

    Google Scholar 

  • Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.

    Article  Google Scholar 

  • Eppley, R. W., Renger, E. H., Venrick, E. L., and Mullin, M. M., 1973, A study of plankton dynamics and nutrient cycling in the central gyre of the North Pacific Ocean, Limnol.Oceanogr., 18:534.

    Article  Google Scholar 

  • Eppley, R. W., and Sharp, J. H., 1975, Photosynthetic measurements in the central North Pacific: The dark loss of carbon in 24 hour incubations, Limnol.Oceanogr., 20:981.

    Article  Google Scholar 

  • Eppley, R. W., Sharp, J. H., Renger, E. H., Perry, M. J., and Harrison, W. G., 1977, Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific Ocean, Mar.Biol., 39:111.

    Article  Google Scholar 

  • Falkowski, P. G., 1980, Light-shade adaptation in marine phytoplankton, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Plenum Press, New York.

    Google Scholar 

  • Fenchel, T., 1974, Intrinsic rate of natural increase: The relationship with body size, Oecologia, 14:317.

    Article  Google Scholar 

  • Fogg, G. E., 1982, Nitrogen cycling in sea waters, Phil.Trans.R.Soc. Lond., B296:511.

    Google Scholar 

  • Gallegos, C. L., and Platt, T., 1981, Photosynthesis measurements on natural populations of phytoplankton: numerical analysis, in: “Physiological Bases of Phytoplankton Ecology,” T. Platt, ed., Can.Bull.Fish.Aquat.Sci. 210, Ottawa.

    Google Scholar 

  • Gargett, A. E., 1976, An investigation of the occurrence of oceanic turbulence with respect to fine structure, J.Phys.Oceanogr., 6:139.

    Article  Google Scholar 

  • Garrett, C., 1979, Mixing in the ocean interior, Dynamics of Atmospheres and Oceans, 3:239.

    Article  Google Scholar 

  • Gieskes, W. W. C., Kraay, G. W., and Baars, M. A., 1979, Current 14C methods for measuring primary production: gross underestimates in oceanic waters, Neth.J.Sea Res., 13:58.

    Article  Google Scholar 

  • Gundersen, K. R., Corbin, J. S., Hanson, C. L., Hanson, M. L., Hanson, R. B., Russel, D. J., Stollar, A., and Yamada, O., 1976, Structure and biological dynamics of the oligotrophic ocean photic zone off the Hawaiian Islands, Pacif.Sci., 30:45.

    Google Scholar 

  • Hall, D. O., and Rao, K. K., 1972, “Photosynthesis,” Edward Arnold, London.

    Google Scholar 

  • Hemmingsen, A. M., 1960, Energy metabolism as related to body size and respiratory surfaces, and its evolution, Reports of the Steno Memorial Hospital, Copenhagen. 9(Part 2): 110p.

    Google Scholar 

  • Herbland, A., 1978, The soluble fluorescence in the open sea: distribution and ecological significance in the equatorial Atlantic Ocean, J.Exp.Mar.Biol.Ecol., 32:275.

    Article  Google Scholar 

  • Herbland, A., and LeBouteiller, A., 1981, The size distribution of phytoplankton and particulate matter in the Equatorial Atlantic Ocean: Importance of ultraseston and consequences, J.Plankt.Res., 3:659.

    Article  Google Scholar 

  • Ivanenkov, V. N., Sapozhnikov, V. V., Chernyakova, A. M., and Gusarova, A. N., 1972, Rate of chemical processes in the photosynthetic layer of the tropical Atlantic, Oceanology, 12:207.

    Google Scholar 

  • Jackson, G. A., 1980, Phytoplankton growth and Zooplankton grazing in oligotrophic oceans, Nature, 284:439.

    Article  Google Scholar 

  • Jassby, A. D., and Platt, T., 1976, Mathematical formulation of the relationship between photosynthesis and light for phytoplankton, Limnol.Oceanogr., 21, 540.

    Article  Google Scholar 

  • Jenkins, W. T., 1980, Tritium and 3He in the Sargasso Sea, J.Mar. Res., 38:533.

    Google Scholar 

  • Johnson, K. M., Burney, C. M., and Sieburth, McN. J., 1981, Enigmatic marine ecosystem metabolism measured by direct diel ΣCO2, and O2 flux in conjunction with DOC release and uptake, Mar.Biol., 65:49.

    Article  Google Scholar 

  • Johnson, P. W., and Sieburth, McN. J., 1979, Chroococcoid cyano-bacteria at sea: A ubiquitous and diverse phototrophic bio-mass, Limnol.Oceanogr., 24:928.

    Article  Google Scholar 

  • Kiefer, D. A., 1973, Fluorescence properties of natural phytoplankton populations, Mar.Biol., 22:263.

    Article  Google Scholar 

  • Knauer, G. A., Martin, J. H., and Bruland, K. W., 1979, Fluxes of particulate carbon, nitrogen and phosphorus in the upper water column of the northeast Pacific, Deep-Sea Res., 26A: 97.

    Article  Google Scholar 

  • Mague, T. H., Mague, F. C., and Holm-Hansen, O., 1977, Physiology and chemical composition of nitrogen-fixing phytoplankton in the central North Pacific Ocean, Mar.Biol., 41:213.

    Article  Google Scholar 

  • Malone, T. C., 1980, Size-fractioned primary productivity of marine phytoplankton, in: “Primary Productivity in the Sea,” P. G. Falkowski, ed., Plenum Press, New York.

    Google Scholar 

  • Martinez, L. A., King, J. M., Silver, M. W., and Alldredge, A. L., 1982, A new system of nitrogen fixation in oligotrophic oceanic waters, (Abstract), EOS., 63:101.

    Google Scholar 

  • McCarthy, J. J., and Carpenter, E. J., 1979, Oscillatoria (Tricho-desmium) thieboutii (Cyanophyta) in the central North Atlantic Ocean, J.Phyco1., 15:75.

    Article  Google Scholar 

  • McGowan, J. A., and Hayward, T. L., 1978, Mixing and oceanic productivity, Deep-Sea Res., 25:771.

    Article  Google Scholar 

  • McLellan, H. J., 1965, “Elements of Physical Oceanography,” Pergamon Press, Oxford.

    Google Scholar 

  • Morel, A., and Bricaud, A., 1981, Theoretical results concerning light absorption in a discrete medium and applications to specific absorption of phytoplankton, Deep-Sea Res., 28:1375.

    Article  Google Scholar 

  • Mullin, M. M., Perry, M. J., Renger, E. H., and Evans, P. M., 1975, Nutrient regeneration by oceanic Zooplankton: a comparison of methods, Mar.Sci.Comm., 1:1.

    Google Scholar 

  • Munk, W. H., 1966, Abyssal recipes, Deep-Sea Res., 13:707.

    Google Scholar 

  • Parker, R. R., 1981, A note on the so-called “soluble fluorescence” of chlorophyll a in natural waters, Deep-Sea Res., 28A:1231.

    Article  Google Scholar 

  • Peterson, B. J., 1980, Aquatic productivity and the 14C-CO2 method: A history of the productivity problem, Ann.Rev.Ecol.Syst., 11:359.

    Article  Google Scholar 

  • Platt, T., 1969, The concept of energy efficiency in primary production, Limnol.Oceanogr., 14:653.

    Article  Google Scholar 

  • Platt, T., and Denman, K. L., 1977, Organisation in the pelagic ecosystem, Helgolander wiss.Meeresunters, 30:575.

    Article  Google Scholar 

  • Platt, T., and Denman, K. L., 1978, The structure of pelagic marine ecosystems, Rapp.Proc.-verb.Reun.Cons.perm.int.Explor.Mer, 173:60.

    Google Scholar 

  • Platt, T., Denman, K. L., and Jassby, A. D., 1977, Modelling the productivity of phytoplankton, in: “The Sea: Ideas and Observations on Progress in the Study of the Seas,” E. D. Goldberg, ed., John Wiley, New York.

    Google Scholar 

  • Platt, T., and Gallegos, C. L., 1980, Modelling primary production, in: “Primary Productivity in the Sea, P. G. Falkowski, ed., Plenum Press, New York.

    Google Scholar 

  • Platt, T., Gallegos, C. L., and Harrison, W. G., 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J.Mar.Res., 38:687.

    Google Scholar 

  • Platt, T., and Jassby, A. D., 1976, The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton, J.Phycol., 12:421.

    Google Scholar 

  • Platt, T., and Silvert, W., 1981, Ecology, physiology, allometry and dimensionality, J.Theor.Biol., 93:855.

    Article  Google Scholar 

  • Platt, T., and Subba Rao, D. V., 1975, Primary production of marine microphytes, in: “Photosynthesis and Productivity in Different Environments,” J. P. Cooper, ed., Cambridge University Press, Cambridge.

    Google Scholar 

  • Pomeroy, L., 1974, The ocean’s food web, a changing paradigm, Bioscience, 24:499.

    Article  Google Scholar 

  • Postma, H., and Rommets, J. W., 1979, Dissolved and particulate organic carbon in the North Equatorial Current of the Atlantic Ocean, Neth.J.Sea.Res., 13:85.

    Article  Google Scholar 

  • Raven, J. A., and Beardall, J., 1981, Respiration and photorespir ation, in: “Physiological Bases of Phytoplankton Ecology,” T. Platt, ed., Can.Bull.Fish.Aquat.Sci. 210, Ottawa.

    Google Scholar 

  • Riley, G. A., 1939, Plankton studies. II. The western north Atlantic, May-June, 1939, J.Mar.Res., 2:145.

    Google Scholar 

  • Riley, G. A., 1951, Oxygen, phosphate and nitrate in the Atlantic Ocean, Bull.Bingham.Oceanogr.Coll., 13:1.

    Google Scholar 

  • Riley, G. A., 1970, Particulate organic matter in seawater, Adv.Mar. Biol., 8:1.

    Article  Google Scholar 

  • Riley, G. A., Stommel, H., and Bumpus, D. F., 1949, Quantitative ecology of the plankton of the Western North Atlantic, Bull. Bingham.Oceanogr.Coll. 12:1.

    Google Scholar 

  • Ryther, J. H., 1954, The ratio of photosynthesis to respiration in marine plankton algae and its effect upon the measurement of productivity, Deep-Sea Res., 2:134.

    Google Scholar 

  • Schmitt, R. W., and Evans, D. L., 1978, An estimate of the vertical mixing due to salt fingers based on observations in the North Atlantic Central Water, J.Geophys.Res., 83:1913.

    Article  Google Scholar 

  • Sheldon, R. W., Prakash, A., and Sutcliffe, W. H., 1972, The size distribution of particles in the ocean, Limnol.Oceanogr., 17:327.

    Article  Google Scholar 

  • Sheldon, R. W., Sutcliffe, W. H., 1978, Generation times of 3h for Sargasso Sea microplankton determined by ATP analysis, Limnol. Oceanogr., 23:1051.

    Google Scholar 

  • Shulenberger, E., and Reid, J. L., 1981, The Pacific shallow oxygen maximum, deep chlorophyll maximum, and primary productivity, reconsidered, Deep-Sea Res., 28A:901.

    Article  Google Scholar 

  • S.I.O., 1975, Data Report, Climax II Expedition SIO Reference 75–6.

    Google Scholar 

  • Smith, W. O., 1977, The respiration of photosynthetic carbon in euphotic areas of the ocean, J.Mar.Res., 35:557.

    Google Scholar 

  • Steemann-Nielsen, E., 1954, On organic production in the oceans, J.Cons.Explor.Mer., 19:309.

    Google Scholar 

  • Suess, E., 1980, Particulate organic carbon flux in the oceans-surface productivity and oxygen utilization, Nature, 288:260.

    Article  Google Scholar 

  • Tailing, J. F., 1957, The phytoplankton population as a compound photosynthetic system, New Phytol., 56:133.

    Article  Google Scholar 

  • Tijssen, S. B., 1979, Diurnal oxygen rhythm and primary production in the mixed layer of the Atlantic Ocean at 20°N, Neth.J.Sea Res., 13:79.

    Article  Google Scholar 

  • Venrick, E. L., 1974, The distribution and significance of Richelia intracellulosis Schmidt in the North Pacific central gyre, Limnol.Oceanogr., 19:437.

    Article  Google Scholar 

  • Waterbury, J. B., Watson, S. W., Guillard, R. R., and Brand, L. E., 1979, Widespread occurrence of a unicellular marine plankton cyanobacterium, Nature, 277:293.

    Article  Google Scholar 

  • Williams, P. J. LeB., 1981, Incorporation of microheterotrophic processes into the classical paradigm of the planktonic food web, Kieler Meeresforsch, 5:1.

    Google Scholar 

  • Worthington, L. V., 1976, “On the North Atlantic Circulation,” Johns Hopkins University Press, Baltimore.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Platt, T., Lewis, M., Geider, R. (1984). Thermodynamics of the Pelagic Ecosystem: Elementary Closure Conditions for Biological Production in the Open Ocean. In: Fasham, M.J.R. (eds) Flows of Energy and Materials in Marine Ecosystems. NATO Conference Series, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0387-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0387-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0389-4

  • Online ISBN: 978-1-4757-0387-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics