Skip to main content

Pharmacological and Biochemical Characterization of Two Categories of Dopamine Receptor

  • Chapter
Dopamine Receptor Agonists

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

At present, dopamine is probably the most studied neurotransmitter within the central nervous system (Horn et al., 1979). Anatomically, dopaminergic neuronal pathways have been defined in many brain regions. Biochemically, minute quantities of dopamine or its precursors and metabolites can be quantified. Changes in the concentration of any of these substances can be detected and correlated with alterations in physiological activity of dopaminergic neurons. Physiologically, various roles have been proposed for dopamine in several brain regions. Pharmacologically, drugs mimicking or antagonizing the effects of dopamine have been identified. Because dopamine regulates the physiological activity of human brain, dopaminergic agonists and antagonists are used as therapeutic agents in clinical medicine. L-DOPA, the precursor of dopamine, as weIl as bromocriptine, a dopaminergic agonist, are effective in treating Parkinsonism; dopaminergic antagonists are used as antiemetics and antipsychotics. Furthermore, because dopamine regulates physiological activity in peripheral tissue, dopamine is used in the treatment of shock, and dopaminergic agonists are used to treat hyperprolactinemia, acromegaly, and to arrest the growth of prolactin-secreting adenomata.

Affiliation is shown for identification only. This manuscript was prepared by Dr. Kebabian as a private citizen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlquist, R. P., 1948, A study of the adrenotopic receptors, Am. J. Physiol. 153:586–600.

    PubMed  CAS  Google Scholar 

  • Ahlquist, R. P., 1981, Adrenoceptors, in: Towards Understanding Receptors (J. W. Lamble, ed.), Elsevier North Holland, Amsterdam, pp. 49–52.

    Google Scholar 

  • Anden, N. E., Dahlstrom, A., Fuxe, K., and Larsson, K., 1966, Functional role of the nigro neostriatal dopamine neurons, Acta Pharmacol. Toxicol. (Kbh.) 24:263–274.

    Article  CAS  Google Scholar 

  • Bacq, Z. M., 1981, Early work on the adrenergic mediator: How to go wrong, in: Towards Understanding Receptors (J. W. Lamble, ed.), Elsevier North Holland, Amsterdam, pp. 44–48.

    Google Scholar 

  • Baumgarten, G., Bjorklund, A., Holstein, A. F., and Nobin, A., 1972, Organization and ultrastructural identification of the catecholamine nerve terminals in the neural lobe and pars intermedia of the rat pituitary, Z. Zellforsch. 126:483–517.

    Article  PubMed  CAS  Google Scholar 

  • Bertler, A., and Rosengren, E., 1959, Occurrence and distribution of dopamine in brain and other tissues, Experientia 15:10–11.

    Article  PubMed  CAS  Google Scholar 

  • Bower, A., Hadley, M. E., and Hruby, V. J., 1974, Biogenic amines and control of melanophore stimulating hormone release, Science 184:70–72.

    Article  PubMed  CAS  Google Scholar 

  • Brown, E. M., Attie, M. F., Reen, S., Gardner, D. G., Kebabian, J. W., and Aurbach, G. D., 1980, Characterization of dopaminergic receptors in dispersed bovine parathyroid cells, Mol. Pharmacol. 18:335–340.

    PubMed  CAS  Google Scholar 

  • Brown, E. M., and Dawson-Hughes, B. F., 1983, Dopamine receptor-mediated activation of adenylate cyclase, cAMP accumulation and PTH secretion in dispersed bovine parathyroid cells, in: Multiple Dopamine Receptors and Modulation of Peripheral Dopamine Receptors (J. W. Kebabian and C. Kaiser, eds.), American Chemical Society, Washington pp. 1–21.

    Google Scholar 

  • Brown, J. H., and Makman, M., 1972, Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3’,5’-cyclic monophosphate formation in intact retina, Proc. Natl. Acad. Sci. U.S.A. 69:539–543.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson, A., Lindqvist, M., Magnusson, T., and Waldeck, B., 1958, On the presence of 3-hydroxytyramine in brain, Science 127:471. Caron, M. G., Beaulieu, M., Raymond, V., Gagne, B., Drouin, J., Lefkowitz, R. J., and Labrie, F., 1978, Dopaminergic receptors in the anterior pituitary gland. Correlation of [3H]-dihydroergocryptine binding with the dopaminergic control of prolactin release, J. Biol. Chem. 253:2244–2253.

    Article  PubMed  CAS  Google Scholar 

  • Clement-Cormier, Y. C, Kebabian, J. W., Petzold, G. L., and Greengard, P., 1974, Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs, Proc. Natl. Acad. Sci. U.S.A. 71:1113–1117.

    Article  PubMed  CAS  Google Scholar 

  • Clement-Cormier, Y. C, Parrish, R. G., Petzold, G. L., Kebabian, J. W., and Greengard, F., 1975, Characterization of a dopamine-sensitive adenylate cyclase in the rat caudate nucleus, J. Neurochem. 25:143–149.

    Article  PubMed  CAS  Google Scholar 

  • Cools, A. R., and Van Rossum, J. M., 1976, Excitation-mediating and inhibition-mediating dopamine receptors: A new coneept towards a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data, Psychopharmacologia (Berl.) 45:243–254.

    Article  PubMed  CAS  Google Scholar 

  • Costall, B., and Naylor, R. J., 1979, Behavioural aspects of dopamine agonists and antagonists, in: The Neurobiology of Dopamine (A. S. Horn, J. Korf, and B. H. C. Westerink, eds.), Academic Press, London, pp. 555–576.

    Google Scholar 

  • Cote, T. E., Munemura, M., Eskay, R. L., and Kebabian, J. W., 1980, Biochemical identification of the β-adrenoeeptor and evidence for the involvement of an adenosine 3’,5’— monophosphate system in the β-adrenergically induced release of a-melanocyte-stimulating hormone in the intermediate lobe of the rat pituitary gland, Endocrinology 107:108–116.

    Article  PubMed  CAS  Google Scholar 

  • Cote, T. E., Grewe, C. W., and Kebabian, J. W., 1981, Stimulation of a D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland decreases the responsiveness of the β-adrenoceptor: Biochemical mechanism, Endocrinology 108:420–426.

    Article  PubMed  CAS  Google Scholar 

  • Cote, T. E., Grewe, C. W., and Kebabian, J. W., 1982a, Guanyl nucleotides participate in the β-adrenergic Stimulation of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland, Endocrinology 110:805–811.

    Article  CAS  Google Scholar 

  • Cote, T. E., Grewe, C. W., Tsuruta, K., Stoof, J. C, Eskay, R. L., and Kebabian, J. W., 1982b, D-2 dopamine receptor-mediated inhibition of adenylate cyclase activity in the intermediate lobe of the rat pituitary gland requires GTP, Endocrinology 110:812–819.

    Article  CAS  Google Scholar 

  • Cote, T. E., Eskay, R. L., Frey, E. A., Grewe, C. W., Munemura, M., Stoof, J. C, Tsuruta, K., and Kebabian, J. W., 1982c, Biochemical and physiological studies of the betaadrenoceptor and the D-2 dopamine receptor in the intermediate lobe of the rat pituitary gland: A review, Neuroendocrinology 35:217–224.

    Article  CAS  Google Scholar 

  • Dale, H. H., 1906, On some physiological actions of ergot, J. Physiol. (Lond.) 34:163–206.

    Google Scholar 

  • DeLean, A., Kilpatrick, B. F., and Caron, M., 1982, Guanine nucleotides regulate both dopaminergic agonist and antagonist binding in porcine anterior pituitary, Endocrinology 110:1064–1066.

    Google Scholar 

  • Denef, C, and Follebouckt, J.-J., 1978, Differential effects of dopamine antagonists on prolactin secretion from cultured rat pituitary cells, Life Sci. 22:431–435.

    Article  Google Scholar 

  • Ernst, A. M., 1969, The role of biogenic amines in the extra-pyramidal system, Acta Physiol Pharmacol. (Neerl) 15:141–154.

    CAS  Google Scholar 

  • Euvrard, C, Ferland, L., Di Paolo, T., Beaulieu, M., Labrie, F., Oberlander, C, Raynaud, J. F., and Boissier, J. R., 1980, Activity of two new potent dopaminergic agonists at the striatal and anterior pituitary levels, Neuropharmacology 19:379–386.

    Article  PubMed  CAS  Google Scholar 

  • Frey, E. A., Cote, T. E., Grewe, C. W., and Kebabian, J. W., 1982, [3H]Spiroperidol identifies a D-2 dopamine receptor inhibiting adenylate cyclase activity in the intermediate lobe of the rat pituitary gland, Endocrinology 110:1897–1904.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, L. I., 1972, Cardiovascular and renal actions of dopamine: Potential clinical applications, Pharmacol. Rev. 24:1–29.

    PubMed  CAS  Google Scholar 

  • Goldberg, L. I., 1979, Introductory lecture: The dopamine vascular receptor: Agonists and Antagonists, in: Peripheral Dopaminergic Receptors. Advances in the Biosciences. Volume 20 (J.-L. Imbs and J. Schwartz, eds.), Pergamon Press, Oxford, pp. 1–12.

    Google Scholar 

  • Goldberg, L. I., and Kohli, J. D., 1979, Peripheral pre-and postsynaptic dopamine receptors: Are they different from dopamine receptors in the central nervous system?, Commun. Psychopharmacol. 3:447–456.

    PubMed  CAS  Google Scholar 

  • Goldberg, L. I., Musgrave, G. E., and Kohli, J. D., 1979, Antagonism of dopamine-induced renal vasodilation in the dog by bulbocapnine and sulpiride, in: Sulpiride and Other Benzamides (P. F. Spano, M. Trabucchi, G. U. Corsini, and G. L. Gessa, eds.); Itahan Brain Research Foundation Press, Milan, pp. 73–81.

    Google Scholar 

  • Goldberg, L. I., and Kohli, J. D., 1983, Peripheral dopamine receptors: A Classification based on potency series and specific antagonism, Trends Pharmacol. Sci. 4:64–66.

    Google Scholar 

  • Goldman, M. E., Beaulieu, M., Kebabian, J. W., and Eskay, R. L., 1983, α-Melanocytestimulating hormone-like peptides in the intermediate lobe of the rat pituitary gland: Characterization of content and release in vitro, Endocrinology 112:435–441.

    Article  PubMed  CAS  Google Scholar 

  • Goodale, D. E., Rusterholz, D. B., Long, J. P., Flynn, J. R., Walsh, B., Cannon, J. G., and Lee, T. L., 1980, Neurochemical and behavioral evidence for a selective presynaptic dopamine receptor agonist, Science 210:1141–1143.

    Article  PubMed  CAS  Google Scholar 

  • Grewe, C. W., and Kebabian, J. W., 1982, Dopamine stimulates production of cyclic AMP by the salivary gland of the cockroach, Nauphoeta cinerea, Cell. Mol. Neurobiol. 2:65–69.

    Article  CAS  Google Scholar 

  • Grewe, C. W., Frey, E. A., Cote, T. E., and Kebabian, J. W., 1982, YM-09151-2: A potent antagonist for a peripheral D2-dopamine receptor, Eur. J. Pharmacol. 81:149–152.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, R. A., Wardell, J. R., Sarau, H. M., and Ridley, P. T., 1982, Characterization of the peripheral and central effects of SK&F 82526, a novel dopamine receptor agonist, J. Pharmacol. Exp. Ther. 223:305–313.

    PubMed  CAS  Google Scholar 

  • Hahn, R. A., MacDonald, B. R., and Martin, M. A., 1983, Antihypertensive activity of LY 141865, a selective presynaptic dopamine receptor agonist, J. Pharmacol. Exp. Ther. 224:206–214.

    PubMed  CAS  Google Scholar 

  • Horn, A. S., Korf, J., and Westerink, B. H. C. (eds.), 1979, The Neurobiology of Dopamine, Academic Press, London.

    Google Scholar 

  • Iorio, L. C, Houser, V., Korduba, C. A., Leitz, F., and Barnett, A., 1981, SCH 23390, a benzazepine with atypical effects on dopaminergic systems, Pharmacologist 23:137.

    Google Scholar 

  • Iorio, L. C, Barnett, A., Leitz, F. H., Houser, V. P., and Korduba, C. A., 1983, SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems, Pharmacol. Exp. Ther. 226:462–468.

    CAS  Google Scholar 

  • Kebabian, J. W., and Calne, D. B., 1979, Multiple receptors for dopamine, Nature 277:93–96.

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J. W., and Greengard, P., 1971, Dopamine-sensitive adenyl cyclase: Possible role in synaptic transmission, Science 174:1346–1349.

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J. W., Petzold, G. L., and Greengard, P., 1972, Dopamine-sensitive adenylate cyclase in the caudate nucleus of rat brain, and its similarity to the “dopamine receptor.” Proc. Natl. Acad. Sci. U.S.A. 69:2145–2149.

    Article  PubMed  CAS  Google Scholar 

  • Kebabian, J. W., Calne, D. B., and Kebabian, P. R., 1977, Lergotrile mesylate: An in vivo dopamine agonist which blocks dopamine receptors in vitro, Commun. Psychopharmacol. 1:311–318.

    CAS  Google Scholar 

  • Kebabian, J. W., Chen, T. C, and Cote, T. E., 1979, Endogenous guanyl nucleotides: Components of the striatum which confer dopamine sensitivity to adenylate cyclase, Commun. Psychopharmacol. 3:421–428.

    PubMed  CAS  Google Scholar 

  • Kebabian, J. W., Miyazaki, K., and Grewe, C. W., 1982, 6,7-dihydroxy-2-dimethylaminotetralin (TL-99) stimulates postjunctional D-1 and D-2 dopamine receptors, Neurochem. Int. 2:227–229.

    Google Scholar 

  • Kohli, J. D., Takeda, H., Ozaki, N., and Goldberg, L. I., 1979, In vitro study with semirigid rotomeric conformational analogues of dopamine, in: Peripheral Dopaminergic Receptors, Advances in the Biosciences, Volume 20 (J.-L. Imbs and J. Schwartz, eds.), Pergamon Press, Oxford, pp. 143–149.

    Google Scholar 

  • Lands, A. M., Arnold, A., McAuliff, Luduena, F. P., and Brown, T. G., 1967, Differentiation of receptor systems activated by sympathomimetic amines, Nature 214:597–598.

    Article  PubMed  CAS  Google Scholar 

  • Langer, S. Z., 1981, Presynaptic regulation of the release of catecholamines, Pharmacol. Rev. 32:337–362.

    Google Scholar 

  • Langley, J. N., 1906, On nerve endings and on special excitable substances in cells, Proc R. Soc. (Lond.) [Biol.] 78:170–194.

    Article  CAS  Google Scholar 

  • Lightman, S. L., Ninkovic, M., and Hunt, S. P., 1982, Localization of [3H]spiperone binding sites in the intermediate lobe of the rat pituitary gland, Neurosci. Lett. 32:99–102.

    Article  PubMed  CAS  Google Scholar 

  • MacLeod, R. M., 1976, Regulation of prolactin release, in: Frontiers in Neuroendocrinology, Volume 4 (L. Martini and W. F. Ganong, eds.), Raven Press, New York, 169–194.

    Google Scholar 

  • Meitzer, H. Y., Mikuni, M., Simonovic, M., and Gudelsky, G. A., 1983, Effect of a novel benzamide, YM-09151-2, on rat serum prolactin levels, Life Sci. 32:1015–1021.

    Article  Google Scholar 

  • Meunier, H., and Labrie, F., 1982a, Specificity of the β2-adrenergic receptor stimulating cyclic AMP accumulation in the intermediate lobe of the rat pituitary gland, Eur. J. Pharmacol 81:411–420.

    Article  CAS  Google Scholar 

  • Meunier, H., and Labrie, F., 1982b, The dopamine receptor in the intermediate lobe of the rat pituitary gland is negatively coupled to adenylate cyclase, Life Sci. 30:963–968.

    Article  CAS  Google Scholar 

  • Miller, R. J., and McDermed, J. D., 1979, Dopamine-sensitive adenylate cyclase, in: The Neurobiology of Dopamine (A. S. Horn, J. Korf, and B. H. C. Westerink, eds.), Academic Press, New York, pp. 159–177.

    Google Scholar 

  • Munemura, M., Cote, T. E., Tsuruta, K., Eskay, R. L., and Kebabian, J. K., 1980a, The dopamine receptor in the intermediate lobe of the rat pituitary gland: Pharmacological characterization, Endocrinology 107:1676–1683.

    Article  CAS  Google Scholar 

  • Munemura, M., Eskay, R. L., and Kebabian, J. W., 1980b, Release of α-melanocyte-stimulating hormone from dispersed cells of the intermediate lobe of the rat pituitary gland: Involvement of catecholamines and adenosine 3’,5’-monophosphate, Endocrinology 106:1795–1803.

    Article  CAS  Google Scholar 

  • Peng Loh, Y., and Gainer, H., 1977, Biosynthesis, processing, and control of release of melanotropic peptides in the neurointermediate lobe of Xenopus laevis, J. Gen. Physiol. 70:37–58.

    Article  Google Scholar 

  • Rodbell, M., 1980, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature 284:17–22.

    Article  PubMed  CAS  Google Scholar 

  • Scatton, B., 1982, Effect of dopamine agonists and neuroleptic agents on striatal acetylcholine transmission in the rat: Evidence against dopamine receptor multiplicity, J. Pharmacol. Exp. Ther. 220:197–202.

    PubMed  CAS  Google Scholar 

  • Seeman, P., 1980, Brain dopamine receptors, Pharmacol. Rev. 32:229–313.

    PubMed  CAS  Google Scholar 

  • Sethy, V. H., 1979, Regulation of striatal acetylcholine concentration by D-2 dopamine receptors, Eur. J. Pharmacol. 60:397–398.

    Article  PubMed  CAS  Google Scholar 

  • Setler, P. E., Sarau, H. M., Zirkle, C. L., and Saunders, H. L., 1978, The central effects of a novel dopamine agonist, Eur. J. Pharmacol. 50:419–430.

    Article  PubMed  CAS  Google Scholar 

  • Shepperson, N. B., Duval, N., Massingham, R., and Langer, S. Z., 1982, Differential blocking effects of several dopamine receptor antagonists for peripheral pre-and postsynaptic dopamine receptors in anesthetized dogs, J. Pharmacol. Exp. Ther. 221:753–761.

    PubMed  CAS  Google Scholar 

  • Sibley, D. R., and Creese, I., 1980, Dopamine receptor binding in bovine intermediate lobe pituitary membranes, Endocrinology 107:1405–1409.

    Article  PubMed  CAS  Google Scholar 

  • Sibley, D. R., DeLean, A., and Creese, I., 1982a, Anterior pituitary dopamine receptors. Demonstration of interconvertible high and low affmity states of the D-2 dopamine receptor, J. Biol. Chem. 257:6351–6361.

    CAS  Google Scholar 

  • Sibley, D. R., Leff, S. E., and Creese, I., 1982b, Interactions of novel dopaminergic ligands with D-l and D-2 dopamine receptors, Life Sci. 31:637–645.

    Article  CAS  Google Scholar 

  • Spano, P. F., Frattola, L., Govoni, S., Tonon, G. C, and Trabucchi, M., 1979, Dopaminergic ergot derivatives: Selective agonists of a new class of dopamine receptors, in: Dopaminergic Ergot Derivatives and Motor Function, Wenner-Gren Center International Symposium Series, Volume 31 (K. Fuxe and D. B. Calne, eds.), Pergamon Press, Oxford, pp. 159–171.

    Google Scholar 

  • Stephanini, E., Devoto, F., Marchisio, A. M., Vernaleone, F., and Collu, R., 1980, [3H]-Spiroperidol binding to a putative dopaminergic receptor in rat pituitary gland, Life Sci. 26:583–587.

    Article  Google Scholar 

  • Stoof, J. C, and Kebabian, J. W., 1981, Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum, Nature 294:366–368.

    Article  PubMed  CAS  Google Scholar 

  • Stoof, J. C, and Kebabian, J. W., 1982, Independent in vitro regulation by the D-2 dopamine receptor of dopamine-stimulated efflux of cyclic AMP and K+-stimulated release of acetylcholine from rat neostriatum, Brain Res. 250:263–270.

    Article  PubMed  CAS  Google Scholar 

  • Teranishi, T., Negishi, K., and Kato, S., 1983, Dopamine modulates S-potential amplitude and dye-coupling between exteraal horizontal cells in carp retina, Nature 301:243–246.

    Article  PubMed  CAS  Google Scholar 

  • Tsuruta, K., Frey, E. A., Grewe, C. W., Cote, T. E., Eskay, R. L., and Kebabian, J. W., 1981, Evidence that LY-141865 specifically stimulates the D-2 dopamine receptor, Nature 292:463–465.

    Google Scholar 

  • Tsuruta, K., Grewe, C. W., and Cote, T. E., Eskay, R. L., and Kebabian, J. W., 1982, Coordinated action of calcium ion and cyclic adenosine 3’,5 ’monophosphate upon the release of α-melanocyte stimulating hormone from the intermediate lobe of the rat pituitary gland, Endocrinology 110:1133–1140.

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt, U., 1971, Postsynaptic supersensitivity after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system, Acta Physiol. Scand. [Suppl.] 367:69–93.

    CAS  Google Scholar 

  • Watling, K. J., and Dowling, J. E., 1981, Dopaminergic mechanisms in teleost retina I. Dopamine-sensitive adenylate cyclase in homogenates of carp retina; effects of agonists, antagonists and ergots, J. Neurochem. 36:559–568.

    Article  PubMed  CAS  Google Scholar 

  • Watling, K. J., and Williams, M., 1982, Interaction of the putative dopamine autoreceptor agonists, 3-PPP and TL-99, with the dopamine-sensitive adenylate cyclase of carp retina, Eur. J. Pharmacol. 77:321–326.

    Article  PubMed  CAS  Google Scholar 

  • Watling, K. J., 1983, A function for dopamine-sensitive adenylate cyclase in the retina?, Trends Pharmacol. Sci. 4:328–329.

    Article  CAS  Google Scholar 

  • Weinstock, J., Wilson, J. W., Ladd, D. L., Brenner, M., Ackerman, D. M., Blumberg, A. L., Brennan, F. T., Hahn, R. A., Heible, J. P., Sarau, H. M., and Wiebelhaus, V. D., 1983, Dopaminergic benzazepines with divergent cardiovascular profiles, in: Multiple Dopamine Receptors and Modulation of Peripheral Dopamine Receptors (J. W. Kebabian and C. Kaiser, eds.), American Chemical Society, Washington pp. 157–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Kebabian, J.W. (1984). Pharmacological and Biochemical Characterization of Two Categories of Dopamine Receptor. In: Poste, G., Crooke, S.T. (eds) Dopamine Receptor Agonists. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0310-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0310-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0312-2

  • Online ISBN: 978-1-4757-0310-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics