Skip to main content

Carcinogen Metabolism in Immortalised Human Cells Grown as Hybrid Cells in Culture

  • Chapter
Pharmaceutical Applications of Cell and Tissue Culture to Drug Transport

Part of the book series: NATO ASI Series ((NSSA,volume 218))

  • 243 Accesses

Abstract

Most cells from normal tissues have two characteristic properties. Their cell division is regulated in a particular way and they produce substances characteristic only of their tissue of origin. It was soon realised, however, that as cells from normal tissues were studied extensively, a limit to their long term cultivation was found. Normal cells died after a finite number of divisions. In contrast, tumour cells grew indefinitely in culture and usually did not express differentiated functions. In order to distinguish between these types of cells with finite or infinite lifespan in culture, Hayflick and Moorhead (1) used the term cell strain to denote normal cells with a finite lifespan and reserved the term cell line for cells which were established in culture and would divide indefinitely. They also noted that the property of infinite cell growth was usually associated with a change in the diploid nature of the cells and that a heteroploid karyotype was common in permanent cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Hayflick and P.S. Moorhead, The serial cultivation of human diploid cell strains, Exp. Cell Res. 25: 585–621 (1961).

    Article  Google Scholar 

  2. O.M. Pereira-Smith and J.R. Smith, Evidence for the recessive nature of cellular immortality, Science 221: 964–966 (1983).

    Article  PubMed  CAS  Google Scholar 

  3. H.E. Ruley, Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture, Nature 304: 602–606 (1983).

    Article  PubMed  CAS  Google Scholar 

  4. P. van den Elsen, A. Houweling and A.J. van der Eb, Expression of region E1B of human adenovirus in the absence of region EIA is not sufficient for complete transformation, Virology 128: 377–390 (1983).

    Article  PubMed  Google Scholar 

  5. B. Zerler, B. Moran, K. Maruyama, J. Moomaw, T. Grodzicker and H.E. Ruley, Adenovirus EIA coding sequences that enable ras and pmt oncogenes to transform cultured primary cells, Mol. Cell Biol. 6: 887–899 (1986).

    PubMed  CAS  Google Scholar 

  6. R. Cone, T. Grodzicker and M. Jaramillo, A retrovirus expressing the 12S adenoviral EIA gene products can immortalise epithelial cells from a broad range of rat tissues, Mol. Cell. Biol. 8: 1036–1044 (1988).

    PubMed  CAS  Google Scholar 

  7. P. Whyte, K.J. Buchkovich, J.M. Horowitz, S.H. Friend, M. Raybuck, R.A. Weinberg and E. Harlow, Association between an oncogene and an anti-oncogene: the adenovirus EIA proteins bind to the retinoblastoma gene product, Nature 334: 124–129 (1988).

    Article  PubMed  CAS  Google Scholar 

  8. S-P. Yee and P.E. Branton, Detection of cellular proteins associated with human adenovirus type 5 early region EIA polypeptides, Virology 147: 142–153 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. E. Harlow, P. Whyte, B.R. Franza and C. Schley, Association of adenovirus early-region 1A proteins with cellular polypeptides, Mol. Cell Biol. 6: 1579–1589 (1986).

    PubMed  CAS  Google Scholar 

  10. N. Dyson, P.M. Howley, K. Munger and E. Harlow, The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product, Science 243: 934–937 (1989).

    Article  PubMed  CAS  Google Scholar 

  11. P. Clertant and I. Seif, A common function for polyoma virus large T and papillomavirus E1 proteins, Nature 311: 276–279 (1984).

    Article  PubMed  CAS  Google Scholar 

  12. M.E. Ewen, J.W. Ludlow, E. Marsillo, J.A. DeCaprio, R.C. Millikan, S.H. Cheng, E. Paucha and D.M. Livingston, An N-terminal transformation-governing sequence of SVAO large T antigen contributes to the binding of both p110Rb and a second cellular protein, p120, Cell 58: 257–267 (1989).

    Article  PubMed  CAS  Google Scholar 

  13. M.D. Waterfield, G.T. Scrace, N. Whittle, P. Stroobant, A. Johnsson, A. Wasteson, B. Westermark, C-H. Heldin, J.S. Huang and T.F. Deuel, Platelet derived growth factor is structurally related to the putative transforming protein p28SIS of simian sarcoma virus, Nature 304: 35–39 (1983).

    Article  PubMed  CAS  Google Scholar 

  14. R.F. Doolittle, M.W. Hunkapiller, L.E. Hood, S.G. Devare, K.C. Robbins, S.A. Aaronson and H.N. Antoniades, Simian Sarcoma Virus onc. gene, v-sis, is derived from the gene (or genes) encoding a platelet derived growth factor, Science 221: 275–277 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. J. Downward, Y. Yarden, E. Mayes, G. Scrace, N. Totty, P. Stockwell, A. Ullrich, J. Schlessinger and M.D. Waterfield, Close similarity of epidermal growth factor receptor and v-erb B oncogene protein sequences, Nature 307: 521–527 (1984).

    Article  PubMed  CAS  Google Scholar 

  16. M.S. Collett and R.L. Erikson, Protein kinase activity associated with the avian sarcoma virus src gene product, Proc. Natl. Acad. Sci. U.S.A. 75: 2021–2024 (1978).

    Article  PubMed  CAS  Google Scholar 

  17. A. Ullrich, L. Coussens, J.S. Hayflick, T.J. Dull, A. Gray, A.W. Tarn, J. Lee, Y. Yarden, T.A. Liebermann, J. Schlessinger, J. Downward, E.L.V. Mayes, N. Whittle, M.D. Waterfield and P.H. Seeburg, Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells, Nature 309: 418–425 (1984).

    Article  PubMed  CAS  Google Scholar 

  18. J.M. Bishop, Tricks with tyrosine kinases, Nature 319: 722–723 (1986).

    Article  PubMed  CAS  Google Scholar 

  19. A. Balamin, Transforming ras oncogenes and multistage carcinogenesis, Brit. J. Cancer 51: 1–7 (1985).

    Article  Google Scholar 

  20. R.A. Weinberg, The action of oncogenes in the cytoplasm and nucleus, Science 230: 770–776 (1985).

    Article  PubMed  CAS  Google Scholar 

  21. K. Kelly, B.H. Cochran, C.D. Stiles and P. Leder, Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet derived growth factor, Cell 35: 603–610 (1983).

    Article  PubMed  CAS  Google Scholar 

  22. J.M. Blanchard, M. Piechaczyk, C. Dani, J.C. Chambard, A. Franchi, J. Pouyssegur and P. Jeanteur, C-myc gene is transcribed at high rate in Go arrested fibroblasts and is post transcriptionally regulated in response to growth factors, Nature 317: 443–445 (1985).

    Article  PubMed  CAS  Google Scholar 

  23. K.L. Fink, E.D. Wieben, G.E. Woloschak and T.C. Speisberg, Rapid regulation of c-myc protooncogene expression by progesterone in the avian oviduct, Proc. Natl. Acad. Sci. U.S.A. 85: 1796–1800 (1988).

    Article  PubMed  CAS  Google Scholar 

  24. D.L. Bentley and M. Groudine, A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL60 cells, Nature 321: 702–706 (1986).

    Article  PubMed  CAS  Google Scholar 

  25. P. Nath, R. Getzenberg, D. Beebe, L. Pallansch and P. Zelenka, c-myc mRNA is elevated as differentiating lens cells withdraw from the cell cycle, Exp. Cell Res. 169: 215–222 (1987).

    Article  PubMed  CAS  Google Scholar 

  26. N Sawada, Hepatocytes from old rats retain responsiveness of c-myc expression to EGF in primary culture but do not enter S phase, Exp. Cell Res. 181: 584–588 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. R.F. Newbold, R.W. Overell and J.R. Connell, Induction of immortality is an early event in malignant transformation of mammalian cells by carcinogens, Nature 299: 633–635 (1982).

    Article  PubMed  CAS  Google Scholar 

  28. R.T. Su and Y-C. Chang, Transformation of human epidermal cells by transfection with plasmid containing Simian Virus 40 DNA linked to a neomycin gene in a defined medium, Exp. Cell Res. 180: 117–133 (1989).

    Article  PubMed  CAS  Google Scholar 

  29. G. Kohler and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity, Nature 256: 495–497 (1975).

    Article  PubMed  CAS  Google Scholar 

  30. L. Olsson and H.S. Kaplan, Human-human monoclonal antibody producing hybridomas: technical aspects, in Methods in Enzymology, vol. 92 pp. 3–16, eds. J.J. Langone and H. van Vunakis, Acad. Press, N.Y. (1983).

    Google Scholar 

  31. D.H. Bissell and P.A. Guzelian, Microsomal functions and phenotypic change in adult rat hepatocytes in primary monolayer cultures, in Gene expression and Carcinogenesis in Cultured Liver, ed. L.E. Gerschenson and E.B. Thompson, pp. 119–136, Acad. Press, N.Y. (1975).

    Google Scholar 

  32. O. Pelkonen and D.W. Nebert, Metabolism of Polycyclic Aromatic Hydrocarbons: Etiologic role in carcinogenesis, Pharmacol. Revs. 34: 189–251 (1982).

    CAS  Google Scholar 

  33. B. Paigen, H.L. Gurtoo, J. Minowada, E. Ward, L. Houten, K. Paigen, A. Reilly and R. Vincent, Genetics of aryl hydrocarbon hydroxylase in the human population and its relationship to lung cancer, in Polycyclic Hydrocarbons and Cancer, ed. H.V. Gelboin and P.O.P. Ts’O, pp. 391–406, Acad. Press, N.Y. (1978).

    Google Scholar 

  34. P. Wang, J. Meijer and F.P. Guengerich, Purification of human liver cytosolic epoxide hydrolase and comparison to the microsomal enzyme, Biochemistry 21: 5769–5776 (1982).

    Article  PubMed  CAS  Google Scholar 

  35. C.B. Kasper and D. Henton, Enzymatic basis of detoxification, vol. 2, pp. 3–36, ed. W.B. Jakoby, Acad. Press, N.Y. (1980).

    Google Scholar 

  36. B. Felluga, A. Claude and E. Mrena, Electron microscope observations on virus particles associated with a transplantable renal adenocarcinoma in BALB/cf/cd mice, J. Natl. Can. Inst. 43: 319–333 (1969).

    CAS  Google Scholar 

  37. C.M. Croce, H. Koprowski and H. Eagle, Effect of environmental pH on the efficiency of cellular hybridisation, Proc. Natl. Acad. Sci. U.S.A. 69: 1953–1956 (1972).

    Article  PubMed  CAS  Google Scholar 

  38. R.L. Davidson and P.S. Gerald, Improved techniques for the induction of mammalian cell hybridization by polyethylene glycol, Somat. Cell Genet. 2: 165–170 (1976).

    Article  PubMed  CAS  Google Scholar 

  39. S. Brown, F.J. Wiebel, H.V. Gelboin and J.D. Minna, Evidence for linkage between aryl hydrocarbon hydroxylase expression and enzyme markers assigned to human chromosome 2 in human x mouse hybrid cells, in Polycyclic Hydrocarbons and Cancer, vol. 2, pp. 407–415, ed. H.V. Gelboin and P.O.P. Ts’O, Acad. Press, N.Y. (1978).

    Google Scholar 

  40. F. Oesch, D.M. Jerina and J.W. Daly, A radiometric assay for hepatic epoxide hydrase activity with 7-3 H styrene oxide, Biochim. Biophys. Acta. 227: 685–691 (1971).

    PubMed  CAS  Google Scholar 

  41. J. Singh and F.J. Wiebel, A highly sensitive and rapid fluorometric assay for UDP-glucuronyl transferase using 3-hydroxybenzo[a]-pyrene as substrate, Anal. Biochem. 98: 394–401 (1979).

    Article  PubMed  CAS  Google Scholar 

  42. O.H. Lowry, N.J. Rosebrough, A.L. Farr and R.J. Randall, Protein measurement with the Folin phenol reagent, J. Biol. Chem. 193: 265–275 (1951).

    PubMed  CAS  Google Scholar 

  43. S. Brown, H.K. Oie, A.F. Gazdar, J.D. Minna and U. Francke, Requirement of human chromosomes 19, 6 and possibly 3 for infection of hamster x human hybrid cells with baboon M7 type C virus, Cell 81: 135–143 (1979).

    Article  Google Scholar 

  44. S. Brown, P.A. Lalley and J.D. Minna, Assignment of the gene for peptidase S to chromosome 4 in man and confirmation of peptidase D assignment to chromosome 19, Cytogenet. Cell Genet. 22: 167–171 (1978).

    Article  PubMed  CAS  Google Scholar 

  45. G. Kellermann, M. Luyten-Kellermann, J.R. Jett, H.L. Moses and R.S. Fontana, Aryl hydrocarbon hydroxylase in man and lung cancer, Human Genet. Suppl., 1: 161–168 (1978).

    Article  CAS  Google Scholar 

  46. S. Brown and D.E. Chalmers, Microsomal epoxide hydrolase activity in human x mouse hybrid cells, Biochem. Biophys. Res. Comm. 137: 775–780 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Brown, S., Ross, H. (1991). Carcinogen Metabolism in Immortalised Human Cells Grown as Hybrid Cells in Culture. In: Wilson, G., Davis, S.S., Illum, L., Zweibaum, A. (eds) Pharmaceutical Applications of Cell and Tissue Culture to Drug Transport. NATO ASI Series, vol 218. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0286-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0286-6_30

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0288-0

  • Online ISBN: 978-1-4757-0286-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics