Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 218))

  • 244 Accesses

Abstract

The constant supply of blood cells required to maintain a normal steady state by replacing the cells lost through senescence is of the order of 4 × 10″ cells per day in a normal human adult, and is even larger in response to haemopoietic stress like blood loss or infection. All blood cells are derived from stem cells in the bone marrow tissue in the adult. The stem cells are characterized by a) their capacity to reconstitute the haemopoietic system of individuals who had received a potentially lethal dose of irradiation, b) their capacity of self-renewal by which they can regenerate their own population after serious and repeated depletion caused by cytotoxic injury, and c) their multipotentiality, i.e. they give rise to all the myeloid and lymphoid cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, T. and Dexter, T.M., (1983. Long term bone marrow culture: an ultrastructural review, Scanning electron microsc. 4, 1951.

    Google Scholar 

  • Chang, J., Coutinho, L., Morgenstern, G., Scarffe, J.H., Deakin, D., Harrison, C., Testa, N.G. and Dexter, T.M. 1986 Marrow from AML in relapse and grown in long term culture can be used to reconstitute the haemopoietic system by autologous bone marrow transplantation, The Lancet 1, 293.

    Google Scholar 

  • Coutinho, L.H., Testa, N.G., Chang, J., Morgenstern, G., Harrison, C., Dexter, T.M. 1989 The use of cultured bone marrow cells in autologous transplantation, Leukemia, in press.

    Google Scholar 

  • Dexter, T.M. (1982) Stroma cell associated haemopoiesis. J. Cell Physiol., suppl. 1, 87.

    Article  CAS  Google Scholar 

  • Dexter, T.M. and Spooncer, E. (1978. Loss of immunoreactivity in long term bone marrow culture, Nature, 275: 135.

    Article  PubMed  CAS  Google Scholar 

  • Eliason, J.F., (1984. Long term production of hemopoietic progenitors in cultures containing low levels of serum, Exp. Hematol. 12: 559.

    PubMed  CAS  Google Scholar 

  • Fausser, A.A. and Messner, H.A. (1979. Identification of megakaryocytes, macrophages and eosinophils in colonies of human bone marrow containing neutrophilic granulocytes and erythroblasts, Blood 53, 1023.

    Google Scholar 

  • Gianni, A.M., Bregni, M., Stern, A.C., Siena, S., Tarella, C., Pileri, A and Bonadona, G., 1989. Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation, The Lancet ii, 580.

    Article  Google Scholar 

  • Goldvasser, E., Beru, N. and Smith, D. 1989. Erythropoietin in: Cellular andmolecular biology of colony stimulating factors, Dexter, T.M., Garland, J. and Testa, N.G. eds. M. Dekker, New York p. 257.

    Google Scholar 

  • Gordon, M.V., Riley, G.P., Watt, S.M., Greaves, M.F. (1987. Compartmentalization of a haematopoietic growth factor (GM-CSF) by glycosaminoglycans in the bone marrow microenvironment, Nature 326, 403.

    Article  PubMed  CAS  Google Scholar 

  • Gough, N.M. and Nicola, N. 1989. Granulocyte-macrophage colony-stimulating factor in: Cellular and molecular biology of colony stimulating factors, Dexter, T.M., Garland, J. and Testa, N.G. eds. M. Dekker, NY p.111.

    Google Scholar 

  • Harrison, D. and Astle, C.H. (1982. Loss of stem cell repopulating ability on transplantation; Effects of donor age, cell number and transplantation procedure, J. Exp. Med. 156, 1767.

    Article  PubMed  CAS  Google Scholar 

  • Heyworth, CM., Ponting I.L.O. and Dexter T.M. (1988. The response of haemopoietic cells to growth factors: developmental implication of synergistic interactions, J. Cell Sci. 91, 239.

    PubMed  CAS  Google Scholar 

  • Humphries, R.K., Evans, A.C. and Eaves, C.J. 1981. Self-renewal of hemopoietic stem cells during mixed colony formation in vitro, Proc. Natl. Acad. Sci. USA, 3629.

    Google Scholar 

  • Lord, B.I. and Testa, N.G. 1988 The hemopoietic system: structure and regulation. in: Hematopoiesis, long term effects of chemotherapy and radiation. Testa, N.G. and Gale, R.P. eds. M. Dekker, New York p.1.

    Google Scholar 

  • Metcalf, D. 1977 Haemopoietic colonies. Springer Verlag, Berlin.

    Google Scholar 

  • Metcalf, D. 1984. The haemopoietic colony stimulating factors. Elsevier. Amsterdam.

    Google Scholar 

  • Metcalf, D. 1988. The molecular control of blood cells. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Metcalf, D., Johnson, G.R., Burges, A.W. (1979 Colony formation in agar by multipotential hemopoietic cells J. Cell Physiol. 98, 401.

    Article  PubMed  CAS  Google Scholar 

  • Nicola, N. 1989 Granulocyte colony stimulating factor in cellular and molecular biology of colony stimulating factors. Dexter, T.M., Garland, J. and Testa, N.G., eds. M. Dekker, New York, p.77.

    Google Scholar 

  • Roberts, R.A., Gallaher, J.T., Spooncer, E., Allen, T.D., Bloomfield, F. and Dexter, T.M. 1988. Heparan sulphate bound growth factors: a mechanism for stromal cell mediated haemopoiesis. Nature 332, 376.

    Article  PubMed  CAS  Google Scholar 

  • Sanderson, C.J. 1989 Eosinophil differentiation factor (Interleukin 5) in: Cellular and Molecular biology of colony stimulating factors Dexter, T.M., Garland, J. and Testa, N.G. eds. M. Dekker, New York p. 231.

    Google Scholar 

  • Spivak, J.L., Smith, R.R. and Ihle, J.N. (1985. Interleukin 3 promotes the in vitro proliferation of murine pluripotent stem cells. J. Clin. Invest. 76: 1613.

    Article  PubMed  CAS  Google Scholar 

  • Testa, N.G. 1985. Clonal assays for haemopoietic and lymphoid cells in vitro. In: Cell clones: manual of mammalian cell techniques. Potten, C.S., Hendry, J.H. eds.

    Google Scholar 

  • Testa, N.G., Hendry, J. and Molineux, G. (1985. Long-term bone marrow damage in experimental systems and in patients after radiation or chemotherapy. Anticancer Res. 5, 101.

    PubMed  CAS  Google Scholar 

  • Testa, N.G., Coutinho, L., Chang J., Morgenstern, G., Scarffe, J.H. and Dexter, T.M. (1987. The use of cultured bone marrow cells for autologous transplantation in patients with acute myeloblastic leukaemia. Haematol. Blood Trans. 31, 75.

    CAS  Google Scholar 

  • Testa, N.G. and Dexter, T.M. 1989. Haemopoietic growth factors: their role in cell development and their clinical use, Cytotechnology, in press.

    Google Scholar 

  • Weiss, L., (1976. The hematopoietic environment of the bone marrow: an ultrastructural study of the stroma in rats. Anat. Rec. 186, 161.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Testa, N.G., Dexter, T.M., Allen, T.D. (1991). Regulation of Haemopoietic Cell Development. In: Wilson, G., Davis, S.S., Illum, L., Zweibaum, A. (eds) Pharmaceutical Applications of Cell and Tissue Culture to Drug Transport. NATO ASI Series, vol 218. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0286-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0286-6_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0288-0

  • Online ISBN: 978-1-4757-0286-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics