Skip to main content

Effect of Culture Environment on Terminal Differentiation of Human Epidermal Keratinocytes

  • Chapter
Pharmaceutical Applications of Cell and Tissue Culture to Drug Transport

Part of the book series: NATO ASI Series ((NSSA,volume 218))

Abstract

The epidermis is the outer covering of the skin and consists of several different cell types: keratinocytes, melanocytes, Langerhans cells and Merkel cells. Keratinocytes are the most abundant of the epidermal cells and are organised into distinct layers, as illustrated in Fig. 1a.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.C., and Watt, F.M., (1989, Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature (Lond.), 340: 307.

    Article  CAS  Google Scholar 

  • Asselineau, D., Bernhard, B., Bailly, C., and Darmon, M., (1985, Epidermal morphogenesis and induction of the 67kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Exp. Cell Res., 159: 536.

    Article  PubMed  CAS  Google Scholar 

  • Asselineau, D., Bernard, B.A., Bailly, C. and Darmon, M., (1989, Retinoic acid improved epidermal morphogenesis. Devel. Biol., 133: 322.

    Article  CAS  Google Scholar 

  • Asselineau, D., Bernard, B.A., Bailly, C., Darmon, M., and Prunieras, M., (1986, Human epidermis reconstructed by culture: is it “normal”? J. Invest. Dermatol., 86: 181.

    Article  PubMed  CAS  Google Scholar 

  • Banks-Schlegel, S., and Green, H., (1980, Formation of epidermis by serially cultivated human epidermal cells transplanted as an epithelium to athymic mice. Transplantation. 29: 308.

    Article  PubMed  CAS  Google Scholar 

  • Banks-Schlegel, S., and Green, H., (1981, Involucrin synthesis and tissue assembly by keratinocytes in natural and cultured human epithelia. J. Cell Biol., 90: 732.

    Article  PubMed  CAS  Google Scholar 

  • Bell, E., Ehlrich, H.P., Buttle, D.J., and Nakatsuji, T., (1981, Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science. 211: 1052.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, I.A., Ku, W, W., Kim, H.J., and Brown, R., 1987, Differentiation and stratification in the epidermis are not obligatorily coupled, in: “Psoriasis. Proceedings of the Fourth International Symposium,” E.M. Farber, L. Nall, V. Morhenn, P.J. Jacobs, eds., Elsevier, New York, p78.

    Google Scholar 

  • Boyce, S.T., and Ham, R.G., (1983, Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined donai culture and serum-free serial culture. J. Invest. Dermatol., 81: 33S.

    Article  Google Scholar 

  • Compton, C.C., Gill, J.M., Bradford, D.A., Regauer, S., Gallico, G.G., and O’Connor, N.E., (1989, Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab. Invest., 60: 600.

    PubMed  CAS  Google Scholar 

  • De Luca, M., D’Anna, F., Bondanza, S., Franzi, A.T. and Cancedda, R., (1988, Human epithelial cells induce human melanocyte growth in vitro but only skin keratinocytes regulate its proper differentiation in the absence of dermis. J. Cell Biol., 107: 1919.

    Article  PubMed  Google Scholar 

  • Dover, R., and Watt, F.M., (1987, Measurement of the rate of epidermal terminal differentiation: expression of involucrin by S-phase keratinocytes in culture and in psoriatic plaques. J. Invest. Dermatol., 89: 349.

    Article  PubMed  CAS  Google Scholar 

  • Eckert, R.L., and Green, H., (1986, Structure and evolution of the human involucrin gene. Cell, 46: 583.

    Article  PubMed  CAS  Google Scholar 

  • Fell, H.B., and Mellanby, E., (1953, Metaplasia produced in cultures of chick ectoderm by high vitamin A. J. Physiol., 119: 470.

    PubMed  CAS  Google Scholar 

  • Fuchs, E., Albers, K., and Kopan, R., (1988, Terminal differentiation in cultured human epidermal cells. Advances in Cell Culture, 6: 1.

    CAS  Google Scholar 

  • Fuchs, E., and Green, H., (1981, Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell, 25: 617.

    Article  PubMed  CAS  Google Scholar 

  • Green, H., and Watt, F.M., (1982, Regulation by vitamin A of envelope cross-linking in cultured keratinocytes derived from different human epithelia. Mol. Cell. Biol., 2: 1115.

    PubMed  CAS  Google Scholar 

  • Green, S., and Chambon, P., (1988, Nuclear receptors enhance our understanding of transcription regulation. Trends in Genetics. 4: 309.

    Article  PubMed  CAS  Google Scholar 

  • Hall, P.A., and Watt, F.M., (1989, Stem cells: the generation and maintenance of cellular diversity. Development. 106: 619.

    PubMed  CAS  Google Scholar 

  • Hawley-Nelson, P., Sullivan, J.E., Kung, M., Hennings, H., and Yuspa, S.H., (1980, Optimized conditions for the growth of human epidermal cells in culture. J. Invest. Pennatol., 75: 176.

    Article  CAS  Google Scholar 

  • Hennings, H., and Holbrook, K.A., (1983, Calcium regulation of cell-cell contact and differentiation of epidermal cells in culture. An ultrastructural study. Exp. Cell Res., 143: 127.

    Article  PubMed  CAS  Google Scholar 

  • Hennings, H., Kruszewski, F.H., Yuspa, S.H., and Tucker, R.W., (1989, Intracellular calcium alterations in response to increased external calcium in normal and neoplastic keratinocytes. Carcinogenesis. 10: 777.

    Article  PubMed  CAS  Google Scholar 

  • Hennings, H., Michael, D., Cheng, C., Steinert, P., Holbrook, K., and Yuspa, S.H., (1980, Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell, 19: 245.

    Article  PubMed  CAS  Google Scholar 

  • Kopan, R., Traska, G., and Fuchs, E., (1987, Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J. Cell Biol., 105: 427.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, I.C., and Fusenig, N.E., (1983, Regeneration of organized epithelial structure. J. Invest. Dermatol., 81: 189S.

    Article  Google Scholar 

  • Magee, A.I., Lytton, N.A., and Watt, F.M., (1987, Calcium-induced changes in cytoskeleton and motility of cultured human keratinocytes. Exp. Cell Res., 172: 43.

    Article  PubMed  CAS  Google Scholar 

  • Menon, G.K., Grayson, S., and Elias, P.M., (1985, Ionic calcium reservoirs in mammalian epidermis: ultrastructural localization by ion-capture cytochemistry. J. Invest. Dermatol., 84: 508.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, A.I., Keeble, S., and Watt, F.M., (1988, The peanut lectin-binding glycoproteins of human epidermal keratinocytes. Exp. Cell Res., 177: 247.

    Article  PubMed  CAS  Google Scholar 

  • Parkinson, E.K., and Emmerson, A., (1982, The effects of tumour promoters and on the multiplication and morphology of cultured human epidermal keratinocytes. Carcinogenesis. 3: 525.

    Article  PubMed  CAS  Google Scholar 

  • Pera, M.F., and Gorman, P.A., (1984, In vitro analysis of multistage epidermal carcinogenesis: development of indefinite renewal capacity and reduced growth factor requirements in colony forming keratinocytes precedes malignant transformation. Carcinogenesis. 5: 671.

    Article  PubMed  CAS  Google Scholar 

  • Potten, C.S., and Morris, R.J., (1988, Epithelial stem cells in vivo. J. Cell Sci., Suppl. 10: 45.

    CAS  Google Scholar 

  • PruniĂ©ras, M., RĂ©gnier, M., and Woodley, D., (1983, Methods for cultivation of keratinocytes with an air-liquid interface. J. Invest. Derm., 81: 28S.

    Article  Google Scholar 

  • Rheinwald, J.G., (1979, The role of terminal differentiation in the finite culture lifetime of the human epidermal keratinocyte. Int. Rev. Cytol., Suppl. 10: 25.

    Article  Google Scholar 

  • Rheinwald, J.G., (1989, Methods for clonai growth and serial cultivation of normal human epidermal keratinocytes and mesothelial cells, in: “Cell Growth and Division. A Practical Approach,” R. Baserga, ed., IRL Press, Oxford, p81.

    Google Scholar 

  • Rheinwald, J.G., and Green, H., 1975, Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell, 6: 331.

    Article  PubMed  CAS  Google Scholar 

  • Rice, R.H., and Green, H., (1978, Relation of protein synthesis and transglutaminase activity to formation of the cross-linked envelope during terminal differentiation of the cultured human epidermal keratinocyte. J. Cell Biol., 76: 705.

    Article  PubMed  CAS  Google Scholar 

  • Rice, R.H., and Green, H., (1979, Presence in human epidermal cells of a soluble protein precursor of the cross-linked envelope: activation of the cross-linking by calcium ions. Cell, 18: 681.

    Article  PubMed  CAS  Google Scholar 

  • Simon, M., and Green, H., (1984, Participation of membrane-associated proteins in the formation of the cross-linked envelope of the keratinocyte. Cell, 36: 827.

    Article  PubMed  CAS  Google Scholar 

  • Teumer, J., and Green, H., (1989, Divergent evolution of part of the involucrin gene in the hominoids: unique intragenic duplications in the gorilla and human. Proc. Natl. Acad. Sci. USA, 86: 1283.

    Article  PubMed  CAS  Google Scholar 

  • Thacher, S.M., and Rice, R.H., (1985, Keratinocyte-specific transglutaminase of cultured human epidermal cells: relation to cross-linked envelope formation and terminal differentiation. Cell, 40: 685.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F.M., (1984, Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis. J. Cell Biol., 98: 16.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F.M., Boukamp, P., Hornung, J., and Fusenig, N.E., (1987, Effect of growth environment on spatial expression of involucrin by human epidermal keratinocytes. Arch. Dermatol. Res., 279: 335.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F.M., and Green, H., (1982, Stratification and terminal differentiation of cultured epidermal cells. Nature (Lond.), 295: 434.

    Article  CAS  Google Scholar 

  • Watt, F.M., Jordan, P.W., and O’Neill, C.H., (1988, Cell shape controls terminal differentiation of human epidermal keratinocytes. Proc. Natl. Acad. Sci. USA, 85: 5576.

    Article  PubMed  CAS  Google Scholar 

  • Watt, F.M., Mattey, D.L., and Garrod, D.R., (1984, Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J. Cell. Biol., 99: 2211.

    Article  PubMed  CAS  Google Scholar 

  • Wolbach, S.B., 1954, Effects of vitamin A deficiency and hypervitaminosis A in animals, in: “The Vitamins,” W.H. Sebrell, Jr., R.S. Harris, eds. Academic Press Inc., New York. p 106.

    Google Scholar 

  • Wolf, G., 1980, Vitamin A, in: “Nutrition and the Adult, Micronutrients,” R.B. Alfin-Slater, and D. Kritchevsky, eds., Plenum Publishing Corporation, New York, p.97.

    Google Scholar 

  • Yaar, M., Stanley, J.R., and Katz, S.I., (1981, Retinoic acid delays the terminal differentiation of keratinocytes in suspension culture. J. Invest. Dermatol., 76: 363.

    Article  PubMed  CAS  Google Scholar 

  • Zelent, A., Krust, A., Petkovich, M., Kastner, P., and Chambon, P., (1989, Cloning of murine α and β retinoic acid receptors and a novel receptor Îł predominantly expressed in skin. Nature, 339: 714.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Watt, F.M. (1991). Effect of Culture Environment on Terminal Differentiation of Human Epidermal Keratinocytes. In: Wilson, G., Davis, S.S., Illum, L., Zweibaum, A. (eds) Pharmaceutical Applications of Cell and Tissue Culture to Drug Transport. NATO ASI Series, vol 218. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0286-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0286-6_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0288-0

  • Online ISBN: 978-1-4757-0286-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics