Skip to main content

Transport of Drugs Across the Blood-Brain Barrier: In Vitro and in Vivo Strategies

  • Chapter
  • 247 Accesses

Part of the book series: NATO ASI Series ((NSSA,volume 218))

Abstract

The transport rate across the BBB is an essential kinetic parameter for drugs acting on the central nervous system, because it determines the time to onset and the intensity of drug action.1,2 For the study of BBB-passage in vivo, various models have been described, however most techniques require the use of many experimental animals and offer only limited information.3–5 Moreover, in the in vivo situation the estimated transport parameters are inevitably influenced by physiological factors which cannot be kept under control during the experiment (e.g. cerebral blood flow, hormone levels, stress levels).6 Therefore comparison of BBB transport parameters obtained in different experimental settings is hazardous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldstein, A., Aronow, L. and Kaiman, S.M.: (1974) Principles of drug action. pp 193–198, Wiley and Sons, New York.

    Google Scholar 

  2. Danhof, M. and Levy, G.: (1984) Kinetics of drug action in disease states. Int. J. Pharmacol. Exp. Ther. 229: 44–50.

    CAS  Google Scholar 

  3. Crone, C.: (1963) The permeability of capillaries in various organs as determined by use of the indicator dilution technique. Acta Physiol. Scand. 58: 292–305.

    Article  PubMed  CAS  Google Scholar 

  4. Oldendorf, W.H.: (1970) Measurement of brain uptake of radiolabeled substances using a tritiated water internal standard. Brain Res. 24: 372–376.

    Article  PubMed  CAS  Google Scholar 

  5. Rapoport, S.I., Ohno, K. and Pettigrew, K.D.: (1979) Drug entry into the brain. Brain Res. 172: 354–359.

    Article  PubMed  CAS  Google Scholar 

  6. Hertz, M.M. and Paulsen, O.B.: (1980) Heterogeneity of cerebral capillary flow in man and its consequences for estimation of blood-brain barrier permeability. J. Clin. Invest. 65: 1145–1151.

    Article  PubMed  CAS  Google Scholar 

  7. Siakotos, A.N., Rouser, G. and Fleischer, S.: (1969). Isolation of highly purified human and bovine brain endothelial cells and nuclei and their phospholipid composition. Lipids 4: 234–239.

    Article  PubMed  CAS  Google Scholar 

  8. Brendel, K., Meezan, E. and Carlson, E.C.: (1974) Isolated brain microvessels: a purified metabolically active preparation from bovine cerebral cortex. Science 185: 953–955.

    Article  PubMed  CAS  Google Scholar 

  9. Djuricic, B.M. and Mrsulja, B.B.: (1977) Enzymatic activity of the brain: microvessels vs total forebrain homogenate. Brain Res. 138: 561–564.

    Article  PubMed  CAS  Google Scholar 

  10. Orlowski, M., Sessa, G. and Green, J.P.: (1974) Gamma-glutamyl transpeptidase in brain capillaries: possible site of a blood-brain barrier for amino acids. Science 184: 66–68.

    Article  PubMed  CAS  Google Scholar 

  11. Caldwell, P.R.B., Segal, B.C., Hsu, K.C., Das, M. and Soffer, K.L.: (1978) Angiotensin converting enzyme: accumulation in medium from cultured endothelial cells. Biochem. Biophys. Res. Commun. 82: 1147–1153.

    Article  Google Scholar 

  12. Jaffe, E.A., Hoyer, L.W. and Nachman, R.L.: (1973) Synthesis of antihemophilic factor antigen by cultured human endothelial cells. J. Clin. Invest. 52: 2757–2764.

    Article  PubMed  CAS  Google Scholar 

  13. Voyta, J.C., Via, D.P., Butterfield, C.E.; Zetter, B.R.: (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J. Cell Biol. 99: 286–297.

    Article  Google Scholar 

  14. Goldstein, G.W., Wolinski, J.S., Csejtey, J. and Diamond, I.: (1975) Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25: 715–717.

    Article  PubMed  CAS  Google Scholar 

  15. Panula, P., Joo, F. and Rechardt, L.: (1978) Evidence for the presence of viable endothelial cells in cultures derived from dissociated rat brain. Experientia 34: 95–97.

    Article  PubMed  CAS  Google Scholar 

  16. Hjelle, J.T., Baird-Lambert, J., Cardinale, G., Spector, S. and Udenfried, S.: (1978) Isolated microvessels the blood-brain barrier in vitro. Proc. Natl. Acad. Sci. U.S.A. 75: 4544–4548.

    Article  PubMed  CAS  Google Scholar 

  17. DeBault, L.E., Kahn, L.E., Frommes, S.P. and Cancilla, P.A.: (1979) Cerebral microvessels and derived cells in tissue culture: isolation and preliminary characterisation. In Vitro 15: 473–487.

    Article  PubMed  CAS  Google Scholar 

  18. Williams, S.K., Gillis, J.F., Matthews, M.A., Wagner, R.C. and Bitenski, M.W.: (1980) Isolation and characterization of brain endothelial cells: morphology and enzyme activity. J. Neurochem. 35: 374–381.

    Article  PubMed  CAS  Google Scholar 

  19. Phillips, P., Kumar, P., Kumar, S., and Waghe, M.: (1979) Isolation and characterization of endothelial cells from rat and cow brain white matter. J. Anat. 129: 261–272.

    PubMed  CAS  Google Scholar 

  20. Spatz, M., Bembry, J., Dodson, R.F., Hervonen, H. and Murray, M.R.: (1980) Endothelial cell cultures derived from isolated cerebral microvessels. Brain Res. 191: 577–582(1980).

    Article  PubMed  CAS  Google Scholar 

  21. Bowman, P.D., Betz, A.L., Ar, D., Wolinsky, J.S., Penney, J.B., Shivers, R.R. and Goldstein, G.W.: (1981) Primary culture of capillary endothelium from rat brain. In Vitro 17: 353–362.

    Article  PubMed  CAS  Google Scholar 

  22. Bowman, P.D., Betz, A.L. and Goldstein, G.W. (1982) Primary culture of microvascular endothelial cells from bovine retina: selective growth using fibronectin coated substrate and plasma derived serum. In Vitro 18: 626–632.

    Article  PubMed  CAS  Google Scholar 

  23. Bowman, P.D., Ennis, S.R., Rarey, K.E., Betz, A.L. and Goldstein, G.W.: (1983) Brain microvessel endothelial cells in tissue culture: a model for study of blood-brain barrier permeability. Ann. Neurol. 14: 396–402.

    Article  PubMed  CAS  Google Scholar 

  24. Betz, A.L., Csejtey, J. and Goldstein, G.W.: (1979) Hexose transport and phosphorylation by capillaries isolated from rat brain. Am. J. Physiol. 236: c96–102c.

    PubMed  CAS  Google Scholar 

  25. Cangiano, C., Cardelli, P., James, J.H., Rossi, F., Patriziz, M.A., Brackett, K.A., Strom, R. and Fischer, J.E.: (1983) Brain microvessels take up large neutral amino acids in exchange for glutamine. J. Biol. Chem. 258: 8949–8954.

    PubMed  CAS  Google Scholar 

  26. Goldstein, G.W.: (1979) Relation of potassium transport to oxidative metabolism in isolated brain capillaries. J. Physiol. (Lond.) 286: 185–195.

    CAS  Google Scholar 

  27. Betz, A.L. and Goldstein, G.W.: (1981) Development changes in metabolism and transport properties isolated from rat brain. J. Physiol. (Lond.) 312: 365–376.

    CAS  Google Scholar 

  28. Choi, T.B. and Pardridge, W.M.: (1986) Phenylalanine transport at the human blood-brain barrier: studies with isolated human brain capillaries. J. Biol. Chem. 261: 6536–6541.

    PubMed  CAS  Google Scholar 

  29. Betz, A.L. and Goldstein, G.W.: (1978) Polarity of the blood-brain barrier: neutral amino acid transport into isolated brain capillaries. Science 202: 225–227.

    Article  PubMed  CAS  Google Scholar 

  30. Betz, A.L., Firth, J.A. and Goldstein, G.W.: (1980) Polarity of the blood-brain barrier: distribution of enzymes between the luminal and the abluminal membranes of brain capillary endothelial cells. Brain Res. 192: 17–28.

    Article  PubMed  CAS  Google Scholar 

  31. Betz, A.L.: (1983) Sodium transport in capillaries isolated from rat brain. J. Neurochem. 41: 1150–1157.

    Article  PubMed  CAS  Google Scholar 

  32. Pardridge, W.M. and Mietus, L.J.: (1981) Enkephalin and the blood-brain barrier: studies of binding and degradation in isolated brain capillaries. Endocrinology 109: 1138–1142.

    Article  PubMed  CAS  Google Scholar 

  33. Ghersi-Egea, J.F., Minn, A. and Siest, G.: (1988) A new aspect of the protective function of the blood-brain barrier: activities of four drug-metabolizing enzymes in isolated rat brain. Life Sci. 42: 2515–2523.

    Article  PubMed  CAS  Google Scholar 

  34. Chabrier, P.E., Roubert, P., Pias, P. and Braquet, P.: (1988) Blood-brain barrier and atrial natriuretic factor. Can. J. Physiol. Pharmacol. 66: 276–279.

    Article  PubMed  CAS  Google Scholar 

  35. White, F.P., Dutton, G.R. and Norenberg, M.D.: (1981) Microvessels isolated from rat brain: localization of astrocyte processes by immunohistochemical techniques. J. Neurochem. 36: 328–332.

    Article  PubMed  CAS  Google Scholar 

  36. Goldstein, G.W., Wolinski, J.S. and Csejtey, J.: (1975) Isolation of metabolically active capillaries from rat brain. J. Neurochem. 25: 715–717.

    Article  PubMed  CAS  Google Scholar 

  37. Diglio, CA., Grammas, P., Giacomelli, F. and Wiener, J.: (1982) Primary culture of rat cerebral microvascular endothelial cells: isolation, growth and characterization. Lab. Invest. 46: 554–563.

    PubMed  CAS  Google Scholar 

  38. Folkman, J., Haudenschild, C.C. and Zetter, B.R.: (1979) Long-term culture of capillary endothelial cells. Proc. Natl. Acad. Sci. U.S.A. 76: 5217–5221.

    Article  PubMed  CAS  Google Scholar 

  39. Audus, K.L. and Borchardt, R.T.: (1986) Characterization of an in vitro model for studying drug transport and metabolism. Pharm. Res. 3: 81–87.

    Article  CAS  Google Scholar 

  40. Rim, S., Audus, K.L. and Borchardt, R.T.: (1986) Relationship of octanol/water and octanol/buffer partition coefficients to transcellular diffusion across brain microvessel endothelial cells. Int. J. Pharm. 32: 79–84.

    Article  CAS  Google Scholar 

  41. Baranczyk, A., Audus, K.L. and Borchardt, R.T.: (1985) Catecholamine metabolizing bovine brain microvessel endothelial cell monolayers. J. Neurochem. 46: 1956–1969.

    Article  Google Scholar 

  42. Audus, K.L. and Borchardt, R.T.: (1986) Characterization of the large neutral amino acid transport system of bovine brain microvessel endothelial cell monolayers. J. Neurochem. 47: 484–488.

    Article  PubMed  CAS  Google Scholar 

  43. Van Bree, J.B.M.M., Audus, K.L. and Borchardt, R.T.: (1988) Carrier-mediated transport of baclofen across monolayers of bovine brain endothelial cells in primary culture. Pharm. Res. 5: 369–371.

    Article  PubMed  Google Scholar 

  44. Van Bree, J.B.M.M., DeBoer, A.G., Danhof, M., Ginsel, L.A. and Breimer, D.D.: (1988) Characterization of an in vitro blood-brain barrier: effects of molecular size and lipophilicity on cerebrovascular endothelial transport rates of drugs. J. Pharmacol. Exp. Ther. 247: 1233–1239.

    PubMed  Google Scholar 

  45. Van Bree, J.B.M.M., DeBoer, A.G., Verhoef, J.C., Danhof, M. and Breimer, D.D.: (1989) Transport of vasopressin fragments across the blood-brain barrier: in vitro studies using monolayer cultures of bovine brain endothelial cells. J. Pharmacol. Exp. Ther. 249: 901–905.

    PubMed  Google Scholar 

  46. Bradbury, M.W.B., Patlak, C.S. and Oldendorf, W.H.: (1975) Analysis of brain uptake and loss of radiotracers after intracarotid injection. Am. J. Physiol. 229: 1110–1115.

    PubMed  CAS  Google Scholar 

  47. Fenstermacher, J.D., Blasberg, R.G. and Patlak, C.S.: (1981) Methods for quantifying the transport of drugs across the blood-brain systems. Pharmac. Ther. 14: 217–248.

    Article  CAS  Google Scholar 

  48. Oldendorf, W.H.: (1974) Blood-brain barrier permeability to drugs. Ann. Rev. Pharmacol. 14: 239–248.

    Article  CAS  Google Scholar 

  49. Yudelevich, D.L. and Derose, N.: (1971) Blood-brain transfer of glucose and other molecules measured by rapid indicator dilution. Am. J. Physiol. 220: 841–846.

    Google Scholar 

  50. Pardridge, W.M., Landaw, E.M., Miller, L.P., Braun, L.D. and Oldendorf, W.H.: (1983) Carotid injection technique: bounds for bolus mixing by plasma and brain. J. Cerebral Blood Flow Metabol. 5: 576–583.

    Article  Google Scholar 

  51. Kastin, A.J., Zadina, J.E., Banks, W.A. and Graf, M.V.: (1984) Misleading concepts in the field of brain peptides. Peptides 5: 249–253.

    Article  PubMed  CAS  Google Scholar 

  52. Fawcett Wilson, J.: (1988) Low permeability of the blood-brain barrier to nanomolar concentrations of immunoreactive alpha-melanotropin. Psychopharmacol. 96: 262–266.

    Google Scholar 

  53. Zlokovic, B., Lipovac, M.N., Begley, DJ., Davson, H. and Rakic, L.: (1988) Slow penetration of thyrotropin-releasing hormone across the blood-brain barrier of an in situ perfused guinea pig brain. J. Neurochem. 51: 252–257.

    Article  PubMed  CAS  Google Scholar 

  54. Banks, W.A. and Kastin, A.J.: (1985) Permeability of the blood-brain barrier to neuropeptides: the case for penetration. Psychoneuroendocrinology 10: 385–399.

    Article  PubMed  CAS  Google Scholar 

  55. Brodie, B.B., Kurz, H. and Shanker, L.S.: (1960) The importance of dissociation constant and lipid solubility in influencing the passage of drugs into CSF. J. Pharmacol. Exp. Ther. 130: 519–528.

    Google Scholar 

  56. Ohno, K., Pettigrew, K.D. and Rapoport, S.I.: (1978) Lower limits of cerebrovascular permeability to non-electrolytes in the conscious rat. Am. J. Physiol. 235: H299–H307.

    PubMed  CAS  Google Scholar 

  57. Preston, E. and Haas, N.: (1986) Defining the lower limits for blood-brain barrier permeability: factors affecting the magnitude and interpretation of permeability-area products. J. Neurosci. Res. 16: 709–719.

    Article  PubMed  CAS  Google Scholar 

  58. Van Bree, J.B.M.M., Baljet, A.V., Van Geyt, A., DeBoer, A.G., Danhof, M. and Breimer, D.D.: (1989) The unit impulse response procedure for the pharmacokinetic evaluation of drug entry into the central nervous system. J. Pharmacokin. Biopharm. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

van Bree, J.B.M.M., de Boer, A.G., Danhof, M., Breimer, D.D. (1991). Transport of Drugs Across the Blood-Brain Barrier: In Vitro and in Vivo Strategies. In: Wilson, G., Davis, S.S., Illum, L., Zweibaum, A. (eds) Pharmaceutical Applications of Cell and Tissue Culture to Drug Transport. NATO ASI Series, vol 218. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0286-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0286-6_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0288-0

  • Online ISBN: 978-1-4757-0286-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics