Skip to main content

Membrane Bioenergetics in Reference to Marine Bacterial Culturability

  • Chapter

Abstract

Understanding of microbial ecology has been expanded by means of isolation, cultivation, and characterization of microorganisms found in natural environments. However, there are still many bacteria which are metabolically active but remain in the so-called “nonculturable” state in nature (44). This state was originally recognized because of the difference observed between direct viable counts and conventional viable counts in seawater (17). Since then, ecological and practical importance of viable but nonculturable cells have been investigated and debated with particular emphasis on Vibrio cholerae and other gram-negative marine bacteria (3, 4, 14, 20, 43, 44). The general features of cells entering the nonculturable state can be summarized as reduction in size (27), decrease in macromolecular synthesis (28), and changes in composition of the cell wall and/or membrane (20, 26). However, little has been investigated with respect to the changes in bioenergetic state.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atsumi, T., L. McCarter, and Y. Imae. 1992. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–184.

    Article  PubMed  CAS  Google Scholar 

  2. Baumann, P., L. Baumann, M. Woolkalis, and S. Bang. 1983. Evolutionary relationships in Vibrio and Photobacterium: a basis for a natural classification. Annu. Rev. Microbiol. 37:369–398.

    Article  PubMed  CAS  Google Scholar 

  3. Colwell, R. R., P. R. Brayton, D. J. Grimes, D. B. Roszak, S. A. Huq, and L. M. Palmer. 1985. Viable but non-culturable Vibrio cholerae and related pathogens in the environment: implications for the release of genetically engineered microorganisms. Bio/Technology 3:817–820.

    Article  Google Scholar 

  4. Colwell, R. R., M. L. Tamplin, P. R. Brayton, A. L. Gauzens, B. D. Tall, D. Herrington, M. M. Levine, S. Hall, A. Huq, and D. A. Sack. 1990. Environmental aspects of Vibrio cholerae in transmission of cholera, p. 327-343. In R. B. Sack and Y. Zinnaka (ed.), Advances on Cholera and Related Diarrheas, vol. 7. KTK Scientific, Tokyo, Japan.

    Google Scholar 

  5. Distel, D. L. 1998. Evolution of chemoautotrophic endosymbioses in bivalves. BioScience 48:277–286.

    Article  Google Scholar 

  6. Dunlap, P. V. 1984. Physiological and morphological state of the symbiotic bacteria from light organ of ponyfish. Biol. Bull. 176:410–425.

    Article  Google Scholar 

  7. Dunlap, P. V. 1985. Osmotic control of luminescence and growth in Photobacterium leiognathi from ponyfish light organs. Arch. Microbiol. 141:44–50.

    Article  PubMed  CAS  Google Scholar 

  8. Dunlap, P. V. 1989. Regulation of luminescence by cyclic AMP in cya-like and crp-like mutants of Vibrio fischeri. J. Bacteriol. 171:1199–1202.

    PubMed  CAS  Google Scholar 

  9. Grogan, D. W. 1984. Interaction of respiration and luminescence in a common marine bacterium. Arch. Microbiol. 137:159–162.

    Article  CAS  Google Scholar 

  10. Hastings, J. W., and K. H. Nealson. 1977. Bacterial bioluminescence. Annu. Rev. Microbiol. 31: 549-595.

    Google Scholar 

  11. Hastings, J. W., J. C. Makemson, and P. V. Dunlap. 1987. How are growth and luminescence regulated independently in light organ symbionts? Symbiosis 4:3–24.

    Google Scholar 

  12. Haygood, M. G., and K. H. Nealson. 1985. The effect of iron on the growth and luminescence of the symbiotic bacterium Vibrio fischeri. Symbiosis 1:39–51.

    CAS  Google Scholar 

  13. Haygood, M. G., and D. L. Distel. 1993. Bioluminescent symbionts of flashlight fishes and deepsea anglerfishes form unique lineages related to the genus Vibrio. Nature 363:154–156.

    Article  PubMed  CAS  Google Scholar 

  14. Hoff, K. A. 1989. Survival of Vibrio anguillarum and Vibrio salmonicida at different salinities. Appl. Environ. Microbiol. 55:1775–1786.

    PubMed  CAS  Google Scholar 

  15. Imae, Y., and T. Atsumi. 1989. Na+-driven bacterial flagellar motors. J. Bioenerg. Biomembr. 21: 705-716.

    Google Scholar 

  16. Jannasch, H. W., and D. C. Nelson. 1984. Recent progress in the microbiology of hydrothermal vents, p. 170-176. In M. J. King and C. A. Reddy (ed.), Current Perspectives in Microbial Ecology. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  17. Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25:415–420.

    Article  PubMed  CAS  Google Scholar 

  18. Kogure, K. 1998. Bioenergetics of marine bacteria. Curr. Opin. Biotechnol. 9:278–282.

    Article  PubMed  CAS  Google Scholar 

  19. Lee, K-H., and E. G. Ruby. 1995. Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal seawater. Appl. Environ. Microbiol. 61:278–283.

    PubMed  CAS  Google Scholar 

  20. Linder, K., and J. D. Oliver. 1989. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55:2837–2842.

    PubMed  CAS  Google Scholar 

  21. Makemson, J. C. 1986. Luciferase-dependent oxygen consumption by bioluminescent vibrios. J. Bacteriol. 165:461–466.

    PubMed  CAS  Google Scholar 

  22. Makemson, J. C., and J. W. Hastings. 1986. Luciferase-dependent growth of cytochrome-deficient Vibrio harveyi. FEMS Microbiol. Ecol. 38:79–85.

    Article  CAS  Google Scholar 

  23. Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemosmotic type of mechanism. Nature 191:144–148.

    Article  PubMed  CAS  Google Scholar 

  24. Nealson, K. H., T. Platt, and J. W. Hastings. 1970. The cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104:313–322.

    PubMed  CAS  Google Scholar 

  25. Nealson, K. H., and J. W. Hastings. 1977. Low oxygen is optimal for luciferase synthesis in some bacteria: ecological implications. Arch. Microbiol. 112:9–16.

    Article  PubMed  CAS  Google Scholar 

  26. Oliver, J. D. 1993. Formation of viable but nonculturable cells, p. 239-272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum, New York, N.Y.

    Google Scholar 

  27. Rollins, D. M., and R. R. Colwell. 1986. Viable but nonculturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52:531–538.

    PubMed  CAS  Google Scholar 

  28. Roth, W. G., M. P. Leckie, and D. N. Dietzler. 1988. Restoration of colony-forming activity in osmotically stressed Escherichia coli by betain. Appl. Environ. Microbiol. 54:3142–3146.

    PubMed  CAS  Google Scholar 

  29. Ruby, E. G., and K. H. Nealson. 1976. Symbiotic association of Photobacterium fischeri with the marine luminous fish Monocentris japonica: a model of symbiosis based on bacterial studies. Biol. Bull. 151:574–586.

    Article  PubMed  CAS  Google Scholar 

  30. Ruby, E. G., and L. M. Asato. 1993. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159:160–167.

    Article  PubMed  CAS  Google Scholar 

  31. Ruby, E. G., and M. J. McFall-Ngai. 1992. A squid that glows in the light: development of an animal-bacterial mutualism. J. Bacteriol. 174:4865–4870.

    PubMed  CAS  Google Scholar 

  32. Singleton, F. L., R. Attwell, S. Jangi, and R. R. Colwell. 1982. Effects of temperature and salinity on Vibrio cholerae growth. Appl. Environ. Microbiol. 44:1047–1058.

    PubMed  CAS  Google Scholar 

  33. Tokuda, H. 1983. Isolation of Vibrio alginolyticus mutants defective in the respiration-coupled Na+ pump. Biochem. Biophys. Res. Commun. 114:113–118.

    Article  PubMed  CAS  Google Scholar 

  34. Tokuda, H., T. Nakamura, and T. Unemoto. 1981. Potassium ion is required for the generation of pH-dependent membrane potential and ApH by the marine bacterium Vibrio alginolyticus. Biochemistry 20:4198–4203.

    Article  PubMed  CAS  Google Scholar 

  35. Tokuda, H., M. Sugasawa, and T. Unemoto. 1982. Role of Na+ and K+ in α-aminoisobutyric acid transport by the marine bacterium Vibrio alginolyticus. J. Biol. Chem. 257:788–794.

    PubMed  CAS  Google Scholar 

  36. Tokuda, H., and T. Unemoto. 1981. A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. Biochem. Biophys. Res. Commun. 102:256–271.

    Article  Google Scholar 

  37. Tokuda, H., and T. Unemoto. 1985. The Na+-motive respiratory chain of marine bacteria. Microbiol. Sci. 2:65–71.

    PubMed  CAS  Google Scholar 

  38. Ulitzur, S., A. Reinhertz, and J. W. Hastings. 1981. Factors affecting the cellular expression of bacterial luciferase. Arch. Microbiol. 137:159–162.

    Google Scholar 

  39. Wada, M., K. Kogure, K. Ohwada, and U. Simidu. 1992. Coupling between the respiratory chain and the luminescent system of Vibrio harveyi. J. Gen. Microbiol. 138:1607–1611.

    CAS  Google Scholar 

  40. Wada, M., H. Tokuda, K. Kogure, and K. Ohwada. 1994. The membrane fraction of Vibrio harveyi as a possible site of in vivo luminescence, p. 560-563. In A. K. Campbell, L. J. Kricka, and P. E. Stanley (ed.), Bioluminescence and Chemiluminescence: Fundamentals and Applied Aspects. John Wiley & Sons, Chichester, United Kingdom.

    Google Scholar 

  41. Wada, M., and P. V. Dunlap. 1997. Molecular cloning of the respiratory NADH dehydrogenase (NDH-2) from Vibrio fischeri, abstr. I-60, p. 331. In Abstracts of the 97th General Meeting of the American Society for Microbiology 1997. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  42. Watanabe, T., N. Mimura, A. Takimoto, and T. Nakamura. 1975. Luminescence and respiratory activities of Photobacterium phosphoreum. J. Biochem. 77:1147–1155.

    PubMed  CAS  Google Scholar 

  43. Wolf, P. W., and J. D. Oliver. 1992. Temperature effects on the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiol. Ecol. 101:33–39.

    Google Scholar 

  44. Xu, H.S., N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes, and R. R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8:313–323.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 ASM Press, Washington, D.C.

About this chapter

Cite this chapter

Wada, M., Kogure, K. (2000). Membrane Bioenergetics in Reference to Marine Bacterial Culturability. In: Colwell, R.R., Grimes, D.J. (eds) Nonculturable Microorganisms in the Environment. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0271-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0271-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0273-6

  • Online ISBN: 978-1-4757-0271-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics