Skip to main content

Epidemiological Significance of Viable but Nonculturable Microorganisms

  • Chapter
Nonculturable Microorganisms in the Environment

Abstract

Although the term “viable but nonculturable” (VBNC) has been used in the literature during the past two decades to describe a survival strategy of microorganisms, notably human pathogens in the aquatic environment, there is an abundance of philosophical musings on this subject in the microbiological literature. For example, Radsimosky in 1930 (119) noted a significant difference in the number of autotrophic and organotrophic bacteria in water samples. Direct microscopic enumeration, used in water bacteriology at the time, yielded counts 200 to 5,000 times higher than culture counts on bacteriological plates (16, 17). The difference between results of bacterial enumeration by direct observation and subsequent measurement of oxygen demand led Butkevitch and Butkevitch (18) to conclude that a significant portion of a given bacterial population, which did not appear as colonies on plates, must be present in a resting stage. Knaysi (82) and Jennison (70) were able to demonstrate metabolic activity of organisms observed by direct microscopy to be present in a sample but failing to grow, hence not appearing as colonies on plates. ZoBell (156) reconfirmed earlier findings that plate culture counts of seawater, although the widely used method at the time (and to this day), yield only a small percentage of the bacteria actually present in a given sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfimov, N. M. 1954. Comparative evaluation of methods for determination of the bacterial count in the sea water. Microbiology 23:693.

    PubMed  CAS  Google Scholar 

  2. Allen-Austin, D., B. Austin, and R. R. Colwell. 1984. Survival of Aeromonas salmonicida in river water. FEMS Microbiol. Lett. 21:143–146.

    Article  Google Scholar 

  3. Amann, R., W. Ludarg, and K. Schleifer. 1994. Identification of uncultured bacteria: a challenging test for molecular taxonomists. ASM News 60:360–365.

    Google Scholar 

  4. Bakker, E. P., H. Rottenberg, and S. R. Caplan. 1976. An estimation of the light-induced electrochemical potential difference of protons across the membrane of Halobacterium halobium. Biochim. Biophys. Acta 440:557–572.

    Article  PubMed  CAS  Google Scholar 

  5. Barcina, I., J. M. Gonzalez, J. Iniberri, and L. Egea. 1989. Effect of visible light on progressive dormancy of E. coli cells during the survival process in natural fresh water. Appl. Environ. Microbiol. 55:246–251.

    PubMed  CAS  Google Scholar 

  6. Bej, A. K., M. H. Mahbubani, J. L. D. Cesare, and R. M. Atlas. 1991. PCR-gene probe detection of microorganisms using filter concentrated samples. Appl. Environ. Microbiol. 57:3529–3534.

    PubMed  CAS  Google Scholar 

  7. Berlin, D. L., D. S. Herson, D. T. Hicks, and D. G. Hoover. 1999. Response of pathogenic Vibrio species to high hydrostatic pressure. Appl. Environ. Microbiol. 65:2776–2780.

    PubMed  CAS  Google Scholar 

  8. Beumer, R. R., J. De Vries, and F. M. Rombouts. 1992. Campylobacter jejuni non-culturable coccoid cells. Int. J. Food Microbiol. 15:153–163.

    Article  PubMed  CAS  Google Scholar 

  9. Blake, P. A., M. H. Merson, R. E. Weaver, D. G. Hollis and P. C. Hueblein. 1979. Disease caused by a marine vibrio: clinical characteristics and epidemiology. N. Engl. J. Med. 300:1–5.

    Article  PubMed  CAS  Google Scholar 

  10. Bocuzzi, V. M., W. L. Straube, J. Ravel, R. R. Colwell, and R. T. Hill. 1998. Preparation of DNA extracted from environmental water samples for PCR amplification. J. Microbiol. Methods 31:193–199.

    Article  Google Scholar 

  11. Bode, G., F. Mauch, and P. Melfertheiner. 1993. The coccoid forms of Helicobacter pylori. Criteria for their viability. Epidemiol. Infect. 111:483–490.

    Article  PubMed  CAS  Google Scholar 

  12. Bowden, W. B. 1977. Comparison of two direct-count techniques for enumerating aquatic bacteria. Appl. Environ. Microbiol. 33:1229–1232.

    PubMed  CAS  Google Scholar 

  13. Bozue, J. A., and W. Johnson. 1996. Interaction of Legionella pneumophila with Acanthamoeba castellani: uptake by coiling phagocytosis and inhibition of phagosome-lysosome fusion. Infect. Immun. 64:668–673.

    PubMed  CAS  Google Scholar 

  14. Brayton, P., M. L. Tamplin, A. Huq, and R. R. Colwell. 1987. Enumeration of Vibrio cholerae O1 in Bangladesh waters by fluorescent-antibody direct viable count. Appl. Environ. Microbiol. 53: 2862–2865.

    PubMed  CAS  Google Scholar 

  15. Buck, G. E. 1990. Campylobacter pylori as gastroduodenal disease. Clin. Microbiol. Rev. 3:1–12.

    PubMed  CAS  Google Scholar 

  16. Butkevitch, V. S. 1932. Zur Methodik der bacteriologischen Meresuntersuchungem und einige Augaben über die Verteilung dur Bakteriea im Wasser und inden Boden des Barends Meeres. Trans. Oceanogr. Inst. Moscow 2:5–39.

    Google Scholar 

  17. Butkevitch, V. S. 1938. On the bacterial population of Caspian and Azov Seas. Microbiology (Moscow) 7:1005–1021.

    Google Scholar 

  18. Butkevitch, N. V., and V. S. Butkevitch. 1936. Multiplication of sea bacteria depending on the composition of the medium and temperature. Microbiology (Moscow) 5:3223.

    Google Scholar 

  19. Byrd, J. J., and R. R. Colwell. 1990. Maintenance of plasmids pBR322 and pUC8 in noncultivable Escherichia coli in the marine environment. Appl. Environ. Microbiol. 56:2104–2107.

    PubMed  CAS  Google Scholar 

  20. Byrd, J. J., H. S. Xu, and R. R. Colwell. 1991. Viable but non-culturable bacteria in drinking water. Appl. Environ. Microbiol. 57:875–878.

    PubMed  CAS  Google Scholar 

  21. Cappelier, J. M., and M. Federighi. 1998. Demonstration of viable but nonculturable state for Campylobacter jejuni. Rev. Med. Vet. 149:319–326

    Google Scholar 

  22. Cholera Working Group, International Center for Diarrhoeal Diseases Research, Bangladesh. 1993. Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae 0139 synonym Bengal. Lancet 342:387–390.

    Article  Google Scholar 

  23. Chongsanguan, M., W. Chaicumga, P. Moolarsart, P. Kandhasingha, T. Shinada, H. Kurazono, and Y. Takeda. 1993. Vibrio cholerae 0139 Bengal in Bangkok. Lancet 342:430–431.

    Article  CAS  Google Scholar 

  24. Chowdhury, M. A. R., H. Yamanaka, S. Miyoshi, K. M. S. Aziz, and S. Shimoda. 1989. Ecology of Vibrio mimicus in aquatic environments. Appl. Environ. Microbiol. 55:2073–2078.

    PubMed  CAS  Google Scholar 

  25. Chowdhury, M. A. R., H. Yamanaka, S. Miyoshi, and S. Shimoda. 1990. Ecology and seasonal distribution of Vibrio parahaemolyticus in aquatic environments of a temperate region. FEMS Microbiol. Ecol. 74:1–9.

    Article  Google Scholar 

  26. Chowdhury, M. A. R., S. Miyoshi, H. Yamanaka, and S. Shimoda. 1992. Ecology and distribution of toxigenic V. cholerae in aquatic environments of a temperate region. Microbios 72:203–213.

    PubMed  CAS  Google Scholar 

  27. Chowdhury, M. A. R., R. T. Hill, and R. R. Colwell. 1994. A gene for the enterotoxin zonula occludens toxin is present in Vibrio mimicus and Vibrio cholerae 0139. FEMS Microbiol. Lett. 119: 377–380.

    Article  PubMed  CAS  Google Scholar 

  28. Chowdhury, M. A. R., R. T. Hill, A. Huq, and R. R. Colwell. 1995. Physiology and molecular genetics of viable but nonculturable microorganisms, p. 105–122. In M. Levin, C. Grim, and J. S. Angle (ed.), Biotechnology and Risk Assessment. Univ. of Maryland Biotechnology Inst., Baltimore, Md.

    Google Scholar 

  29. Chowdhury, M. A. R., B. Xu, R. Montilla, J. A. K. Hasan, A. Huq, and R. R. Colwell. 1995. A simplified immunofluorescence technique for detection of viable cells of Vibrio cholerae O1 and O139. J. Microbiol. Methods 24:165–170.

    Article  Google Scholar 

  30. Chun, J., A. Huq, and R. R. Colwell. 1999. Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus. Appl. Environ. Microbiol. 65:2202–2208.

    PubMed  CAS  Google Scholar 

  31. Cole, S. P., D. Cirillo, M. F. Kagnoff, D. G. Guiney, and L. Eckmann. 1997. Coccoid and spiral Helicobacter pylori differ in their abilities to adhere to gastric epithelial cells and induce interleukin-8 secretion. Infect. Immun. 65:843–846.

    PubMed  CAS  Google Scholar 

  32. Collins, V. G., and C. Kipling. 1957. The enumeration of waterborne bacteria by a new direct count method. J. Appl. Bacteriol. 20:257–264.

    Article  Google Scholar 

  33. Colwell, R. R., J. Kaper, and S. W. Joseph. 1977. Vibrio cholerae, Vibrio parahaemolyticus and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394–396.

    PubMed  CAS  Google Scholar 

  34. Colwell, R., P. Brayton, D. Grimes, D. Roszak, S. Huq, and L. Palmer. 1985. Viable, but nonculturable Vibrio cholerae and related pathogens in the environment: implications for release of genetically engineered microorganisms. Bio/Technology 3:817–820.

    Article  Google Scholar 

  35. Colwell, R. R., M. L. Tamplin, P. R. Brayton, A. L. Gauzens, B. D. Tall, D. Harrington, M. M. Levine, S. Hall, A. Huq, and D. A. Sack. 1990. Environmental aspects of V. cholerae in transmission of cholera, p. 327–343. In R. B. Sack and Y. Zinnaka (ed.), Advances in Research on Cholera and Related Diarrhoeas, 7th ed. K. T. K. Scientific Publishers, Tokyo, Japan.

    Google Scholar 

  36. Colwell, R. R., J. A. K. Hasan, A. Huq, L. Loomis, R. J. Siebling, M. Torres, S. Galvez, S. Islam, and D. Bernstein. 1992. Development and evaluation of a rapid, simple sensitive monoclonal antibody-based co-agglutination test for direct detection of V cholerae O1. FEMS Microbiol. Lett. 97:215–220.

    Article  Google Scholar 

  37. Colwell, R. R., A. Huq, K. A. Cunningham, and G. Losonsky. 1992. Prospective study of divingassociated illnesses, p. 63–70. Proc. Int. Symp. on Hazards of Diving in Polluted Waters. Maryland Sea Grant College Publication No. UM-SG-TS-92-02. University of Maryland, College Park, Md.

    Google Scholar 

  38. Colwell, R. R., and A. Huq. 1994. Vibrios in the environment: viable but nonculturable Vibrio cholerae, p. 117–133. In I. K. Wachsmuth, O. Olsvik, and P. A. Blake (ed.), Vibrio cholerae and Cholera: Molecular to Global Perspectives. ASM Press, Washington, D.C.

    Google Scholar 

  39. Colwell, R. R., and A. Huq. 1999. Global microbial ecology: biogeography and diversity of Vibrios as a model. J. Appl. Microbiol. Symp. Suppl. 85:134S–137S.

    Google Scholar 

  40. Colwell, R. R., and W. M. Spira. 1992. The ecology of Vibrio cholerae, p. 107–127. In D. Barua and W. B. Greenough III (ed.), Cholera Plenum Medical Book Company, New York, N.Y.

    Google Scholar 

  41. Colwell, R. R., P. Brayton, D. Herrington, B. Tall, A. Huq, and M. M. Levine. 1996. Viable but non-culturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World J. Microbioi Biotechnol. 12:28–31.

    Article  Google Scholar 

  42. Davis, B. R., G. R. Fanning, J. M. Madden, A. G. Steigerwalt, H. B. Bradford, Jr., H. L. Smith, Jr., and D. J. Breuner. 1981. Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus. J. Clin. Microbiol. 14:631–639.

    CAS  Google Scholar 

  43. Dawe, L. L., and W. R. Penrose. 1978. Bactericidal property of seawater: death or deliberation? Appl. Environ. Microbiol. 35:829–833.

    PubMed  CAS  Google Scholar 

  44. Duncan, S., L. A. Glover, K. Killham, and J. I. Prosser. 1994. Luminescence-based detection of activity of starved and viable but non-culturable bacteria. Appl. Environ. Microbiol. 60:1308–1316.

    PubMed  CAS  Google Scholar 

  45. Finlay, B., and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:136–169.

    PubMed  CAS  Google Scholar 

  46. Fry, J. C. 1990. Direct methods and biomass estimation. Methods Microbiol. 22:41–85.

    Article  Google Scholar 

  47. Fuhrman, J. A., D. E. Comeau, A. Hagstrom, and A. M. Cham. 1988. Extraction from natural planktonic microorganisms of DNA suitable for molecular biological studies. Appl. Environ. Microbiol. 54:1426–1429.

    PubMed  CAS  Google Scholar 

  48. Gonzalez, J. M., J. Iriberri, L. Egea, and I. Barcina. 1992. Characterization of culturable protistan grazing and death of enteric bacteria in aquatic ecosystem. Appl. Environ. Microbiol. 58:998–1004.

    PubMed  CAS  Google Scholar 

  49. Goodwin, C. S., and J. A. Armstrong. 1990. Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur. J. Clin. Microbiol. Infect. Dis. 9:1–13.

    Article  PubMed  CAS  Google Scholar 

  50. Grimes, D. J., and R. R. Colwell. 1986. Viability and virulence of Escherichia coli suspended by membrane chamber in semi-tropical ocean water. FEMS Microbiol. Lett. 34:161–165.

    Article  Google Scholar 

  51. Hasan, J. A. K., A. Huq, M. L. Tamplin, R. Siebeling, and R. R. Colwell. 1994. A novel kit for rapid detection of V. cholerae O1. J. Clin. Microbiol. 32:249–252.

    PubMed  CAS  Google Scholar 

  52. Hasan, J. A. K., M. A. R. Chowdhury, M. Shahabuddin, A. Huq, L. Loomis, and R. R. Colwell. 1994. Polymerase chain reaction for the detection of cholera. Toxin genes in viable but nonculturable V cholerae O1. World J. Microbiol. Biotechnol. 10:568–571.

    Article  CAS  Google Scholar 

  53. Hasan, J. A. K., D. Bernstein, A. Huq, L. Loomis, M. L. Tamplin, and Rita R. Colwell. 1994. Cholera DFA: an improved direct fluorescent monoclonal antibody staining kit for rapid detection and enumeration of Vibrio cholerae O1. FEMS Microbiol. Lett. 120:143–148.

    Article  PubMed  CAS  Google Scholar 

  54. Heidelberg, J. F., K. R. O’Neill, D. Jacobs, and R. R. Colwell. 1993. Enumeration of Vibrio vulnificus on membrane filters with a fluorescently labeled oligonucleotide probe specific for kingdom-level 16S rRNA sequences. Appl. Environ. Microbiol. 59:3474–3476.

    PubMed  CAS  Google Scholar 

  55. Heidelberg, J. F., M. Shahamat, M. A. Levin, I. Rahman, and R. R. Colwell. 1997. Effect of aerosolization on culturability and viability of gram-negative bacteria. Appl. Environ. Microbiol. 63: 3585–3588.

    PubMed  CAS  Google Scholar 

  56. Hoff, K. A. 1989. Survival of Vibrio anguillarum and Vibrio salmonicida at different salinity. Appl. Environ. Microbiol. 55:1775–1786.

    PubMed  CAS  Google Scholar 

  57. Höller, C., D. Witthuhn, and B. Janzen-Blunck. 1998. Effect of low temperatures on growth, structure, and metabolism of Campylobacter coli SP10. Appl. Environ. Microbiol. 64:581–587.

    PubMed  Google Scholar 

  58. Hughes, J. M., J. M. Boyce, R. J. Levine, M. U. Khan, K. M. A. Aziz, M. I. Huq, and G. T. Curlin. 1982. Epidemiology of El Tor cholera in rural Bangladesh: importance of surface water in transmission. Bull W.H.O. 60:395–404.

    PubMed  CAS  Google Scholar 

  59. Huq, A., E. B. Small, P. A. West, M. I. Huq, R. Rahman, and R. R. Colwell. 1983. Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl. Environ. Microbiol. 45:275–283.

    PubMed  CAS  Google Scholar 

  60. Huq, A., E. Small, P. West, and R. R. Colwell. 1984. The role of planktonic copepods in the survival and multiplication of Vibrio cholerae in the environment, p. 521–534. In R. R. Colwell (ed.), Vibrios in the Environment. John Wiley & Sons, New York, N.Y.

    Google Scholar 

  61. Huq, A., R. R. Colwell, R. Rahman, A. Ali, M. A. R. Chowdhury, S. Parveen, D. A. Sack, and E. Russek-Cohen. 1990. Detection of V. cholerae O1 in the aquatic environment by fluorescent monoclonal antibody and culture method. Appl. Environ. Microbiol. 56:2370–2373.

    PubMed  CAS  Google Scholar 

  62. Huq, A., J. A. K. Hasan, G. Losonsky, V. Diomin, and R. R. Colwell. 1994. Colonization of professional divers by toxigenic Vibrio cholerae O1 and V cholerae non-O1 at dive sites in the United States, Ukraine and Russia. FEMS Microbiol. Lett. 120:137–142.

    Article  PubMed  CAS  Google Scholar 

  63. Huq, A., and R. R. Colwell. 1995. A microbiological paradox: viable but nonculturable bacteria with special reference to Vibrio cholerae. J. Food Protect. 59:96–101.

    Google Scholar 

  64. Hussong, D., R. R. Colwell, M. O’Brien, E. Weiss, A. D. Pearson, R. M. Weiner, and W. D. Bürge. 1987. Viable Legionella pneumophila not detectable by culture on agar media. Bio/Technology 5:947–952.

    Article  Google Scholar 

  65. Islam, M. S., B. S. Drasar, and D. J. Bradley. 1990. Long-term persistence of toxigenic V cholerae O1 in the mucilagenous sheath of a blue-green alga, Anabaena variabilis. J. Trop. Med. Hyg. 93: 133–139.

    PubMed  CAS  Google Scholar 

  66. Islam, M. S., M. K. Hasan, M. A. Miah, G. C. Sur, A. Felsenstein, M. Venkatesan, R. B. Sack, and M. J. Albert. 1993. Use of the polymerase chain reaction and fluorescent antibody methods for detecting viable but nonculturable Shigella dysenteriae type 1 in laboratory microcosms. Appl. Environ. Microbiol. 59:536–540.

    PubMed  CAS  Google Scholar 

  67. James, B. W., W. S. Mauchline, P. J. Dennis, C. W. Keevil, and R. Wait. 1999. Poly-3-hydroxibutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl. Environ. Microbiol. 65:822–827.

    PubMed  CAS  Google Scholar 

  68. Janda, J. M., E. J. Botton, and M. Reltano. 1983. Aeromonas species in clinical microbiology: significance, epidemiology, and specification. Diagn. Microbiol. Infect. Dis. 1:221–228.

    Article  PubMed  CAS  Google Scholar 

  69. Jannasch, H. W. 1969. Estimations of bacterial growth rates in natural waters. J. Bacteriol. 99: 156–160.

    PubMed  CAS  Google Scholar 

  70. Jennison, M. W. 1937. Relations between plate counts and direct microscopic counts of E. coli during logarithmic growth period. J. Bacteriol. 33:461–469.

    PubMed  CAS  Google Scholar 

  71. Jentsch, T. J., A. M. Garcia, and H. F. Lodish. 1989. Primary structure of a noted 4-acetamido-4′isothiocyanostilbene-2-2′disulphonic acid (SITS)-binding membrane protein lights expressed in Torpedo California electroplax. Biochem. J. 261:155.

    PubMed  CAS  Google Scholar 

  72. Jepras, R. I., J. Carter, S. C. Pearson, F. E. Paul, and M. J. Wilkinson. 1995. Development of a robust flow cytometric assay for determining numbers of viable bacteria. Appl. Environ. Microbiol. 61:2696–2701.

    PubMed  CAS  Google Scholar 

  73. Jiang, X., and T. Chai. 1996. Survival of Vibrio parahaemolyticus at low temperatures under starvation conditions and subsequent resuscitation of viable, nonculturable cells. Appl. Environ. Microbiol. 62:1300–1305.

    PubMed  CAS  Google Scholar 

  74. Johnston, J. M., S. F. Becker, and L. M. McFarland. 1986. Gastroenteritis in patients with stool isolates of Vibrio vulnificus. Am. J. Med. 80:336–338.

    Article  PubMed  CAS  Google Scholar 

  75. Jones, D. M., E. M. Sutcliffe, and A. Curry. 1991. Recovery of viable non-culturable Campylobacter jejuni. J. Gen. Microbiol. 137:2477–2482.

    PubMed  CAS  Google Scholar 

  76. Kaneko, T., and R. R. Colwell. 1973. Ecology of Vibrio parahaemolyticus in Chesapeake Bay. J. Bacteriol. 113:24–32.

    PubMed  CAS  Google Scholar 

  77. Karsinkin, G. S., and S. J. Kusnetsov. 1931. Neue Methoden in der Limnologie. Arb. Limnol. Sta. Kossino. 13:47–48. (In Russian, with German summary.)

    Google Scholar 

  78. Kepner, R. L., Jr., and J. R. Pratt. 1994. Use of fluorochromes for direct enumeration of total bacteria in environmental samples: past and present. Microbiol. Rev. 58:603–615.

    PubMed  CAS  Google Scholar 

  79. Khan, M. U., G. T. Curlin, and M. I. Huq. 1979. Epidemiology of Shigella dysenteriae type 1 infections in Dacca urban area. J. Trop. Geogr. Med. 31:213–223.

    CAS  Google Scholar 

  80. Kim, Y. M., B. H. Lee, S. H. Lee, and T. S. Lee. 1990. Distribution of Vibrio vulnificus in seawater of Kwangan Beach, Pusan, Korea. Bull. Korean Fish. Soc. 22:385–390.

    Google Scholar 

  81. Klein, P. D., D. Y. Graham, A. Gaillour, A. R. Opekum, and E. O. Smith. 1991. Water source as risk factor for H. pylori infection in Peruvian children. Lancet 337:1503–1505.

    Article  PubMed  CAS  Google Scholar 

  82. Knaysi, G. 1935. A microscopic method of distinguishing dead from living cells. J. Bacteriol. 30: 193–206.

    PubMed  CAS  Google Scholar 

  83. Kogure, K., U. Simidu, and N. Taga. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25: 415–420.

    Article  PubMed  CAS  Google Scholar 

  84. Kondo, K., A. Takade, and K. Amako. 1994. Morphology of the viable but non-culturable Vibrio cholerae as determined by the freeze fixation technique. FEMS Microbiol. Lett. 123:179–184.

    Article  PubMed  CAS  Google Scholar 

  85. Kurath, G., and Y. Morita. 1983. Starvation survival and physiological studies of a marine Pseudomonas spp. Appl. Environ. Microbiol. 45:1206–1211.

    PubMed  CAS  Google Scholar 

  86. Lambert, J. R., S. K. Lin, and J. Aranda-Michel. 1995. Helicobacter pylori. Scand. J. Gastroenterol. 30(Suppl. 208):33–46.

    Article  Google Scholar 

  87. Lebaron, P., N. Parthuisot, and P. Catala. 1998. Comparison of blue nucleic acid dyes for flow cytometric enumeration of bacteria in aquatic systems. Appl. Environ. Microbiol. 64:1725–1730.

    PubMed  CAS  Google Scholar 

  88. Lee, K., and E. G. Ruby. 1995. Symbiotic role of the viable but non-culturable state of V. fischeri in Hawaiian coastal waters. Appl. Environ. Microbiol. 61:278–283.

    PubMed  CAS  Google Scholar 

  89. Lennette, E. H., A. Balows, W. J. Hausier, Jr., and H. J. Shadomy (ed.). 1985. Manual of Clinical Microbiology, 4th ed. American Society of Microbiology, Washington, D.C.

    Google Scholar 

  90. Linder, K., and J. D. Oliver. 1989. Membrane fatty acid and virulence changes in the viable but nonculturable state of Vibrio vulnificus. Appl. Environ. Microbiol. 55:2837–2842.

    PubMed  CAS  Google Scholar 

  91. Losonsky, G. A., J. A. K. Hasan, A. Huq, S. Kaintuch, and R. R. Colwell. 1994. Serum antibody responses of divers to waterborne pathogens. J. Clin. Diagnos. Lab. Immun. 1:182–185.

    CAS  Google Scholar 

  92. Magarinos, B., J. L. Romalde, J. L. Barja, and A. E. Toranzo. 1994. Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Appl. Environ. Microbiol. 60:180–186.

    PubMed  CAS  Google Scholar 

  93. Mai, U. E. H., M. Shahamat, and R. R. Colwell. 1990. Survival of Helicobacter pylori in the aquatic environment, p. 90–96. In H. Menge, M. Gregor, G. N. J. Tytgat, B. J. Marshal, and C. A. M. McNulty (ed.), Proceedings of the 2nd International Symposium on Helicobacter pylori, August 25–26, Bad Nauheim, Berlin. Springer-Verlag, Berlin, Germany.

    Google Scholar 

  94. Martins, M. T., P. S. Sanchez, M. I. Z. Sato, P. R. Brayton, and R. R. Colwell. 1993. Detection of Vibrio cholerae O1 in the aquatic environment in Brazil employing direct immunofluorescence microscopy. World J. Microbiol. Biotechnol. 9:390–392.

    Article  Google Scholar 

  95. Martins, M. T., I. G. Rivera, D. L. Clark, and B. H. Olson. 1992. Detection of virulence factors in culturable Escherichia coli isolates from water samples by DNA probes and recovery of toxinbearing strains in minimal o-nitrophenol-beta-D-galactopyranoside-4-methylumbelliferyl-beta-D-glucoronide media. Appl. Environ. Microbiol. 58:3095–3100.

    PubMed  CAS  Google Scholar 

  96. Mason, J. D., L. A. R. Allman, J. M. Stark, and D. Lloyd. 1995. The ability of membrane potential dyes and calcofluor white to distinguish between viable and nonviable bacteria. J. Appl. Bacteriol. 78:309–315.

    Article  PubMed  CAS  Google Scholar 

  97. Maurelli, A. T., A. E. Hromockyj, and M. L. Bernardini. 1992. Environmental regulation of Shigella virulence. Curr. Top. Microbiol. Immunol. 180:95–116.

    Article  PubMed  CAS  Google Scholar 

  98. McFeters, G. A., and D. G. Stuart. 1972. Survival of coliform bacteria in natural waters: field and laboratory studies with membrane filter chambers. Appl. Environ. Microbiol. 24:805–811.

    CAS  Google Scholar 

  99. Medema, G. J., F. M. Schets, A. W. van de Giessen, and A. H. Haveljar. 1992. Lack of colonization of 1 day chicks by viable non-culturable Campylobacter jejuni. J. Appl. Bacteriol. 72: 512–516.

    Article  PubMed  CAS  Google Scholar 

  100. Mekalanos, J. J. 1992. Environmental signals controlling expression of virulence determinants in bacteria. J. Bacteriol. 174:1–7.

    PubMed  CAS  Google Scholar 

  101. Miller, J. F., J. J. Mekalanos, and S. Falkow. 1989. Coordinate regulation and sensory transduc-tion in the control of bacterial virulence. Science 243:916–922.

    Article  PubMed  CAS  Google Scholar 

  102. Moran, A. P., and M. E. Upton. 1987. Factors affecting production of coccoid forms by Campylobacter jejuni on solid media during incubation. J. Appl. Bacteriol. 62:527–537.

    Article  PubMed  CAS  Google Scholar 

  103. Morgan, J. A. W., C. Winstanley, R. W. Pickup, J. A. Jones, and J. R. Saunders. 1989. Direct phenotypic and genotypic detection of a recombinant pseudomonal population released into lake water. Appl. Environ. Microbiol. 55:2537–2544.

    PubMed  CAS  Google Scholar 

  104. Morgan, J. A. W., G. Rhodes, and R. W. Pickup. 1993. Survival of nonculturable Aeromonas salmonicida in lake water. Appl. Environ. Microbiol. 59:874–880.

    PubMed  CAS  Google Scholar 

  105. Narikawa, S., S. Kawai, H. Aoshima, O. Kawamata, R. Kawaguchi, K. Hikiji, M. Kato, S. Iino, and Y. Mizushima. 1997. Comparison of the nucleic acids of helical and coccoid forms of Helicobacter pylori. Clin. Diagn. Lab. Immunol. 4:285–290.

    PubMed  CAS  Google Scholar 

  106. Nilius, M., A. Ströhle, G. Bode, and P. Malfertheiner. 1993. Coccoid like forms (CLF) of Helicobacter pylori. Enzyme activity and antigenicity. Int. J. Med. Microbiol. Virol. Parasitol. Infect. Dis. 280:259–272.

    CAS  Google Scholar 

  107. O’Neill, K. R., S. H. Jones, and D. J. Grimes. 1992. Seasonal incidence of Vibrio vulnificus in the Great Bay Estuary of New Hampshire and Maine. Appl. Environ. Microbiol. 58:3257–3262.

    PubMed  Google Scholar 

  108. Oliver, J. D., and D. Wanucha. 1989. Survival of V. vulnificus at reduced temperatures and elevated nutrients. J. Food Safety 10:79–86.

    Article  Google Scholar 

  109. Oliver, J. D. 1993. Formation of viable but non-culturable cells, p. 239–272. In S. Kjelleberg (ed.), Starvation in Bacteria. Plenum Press, New York, N.Y.

    Google Scholar 

  110. Pace, J. L., T. Chai, H. A. Rossi, and X. Jiang. 1997. Effect of bile on Vibrio parahaemolyticus. Appl. Environ. Microbiol. 63:2372–2377.

    PubMed  CAS  Google Scholar 

  111. Paszko-Kolva, C., M. Shahamat, H. Yamamoto, T. Sawyer, J. Vives-Rego, and R. R. Colwell. 1991. Survival of Legionella pneumophila in the aquatic environment. Microbiol. Ecol. 22:75–83.

    Article  Google Scholar 

  112. Paszko-Kolva, C., M. Shahamat, and R. R. Colwell. 1992. Long-term survival of Legionella pneumophila serogroup 1 under low nutrient conditions and associated morphological changes. FEMS Microbiol. Ecol. 102:45–55.

    Article  Google Scholar 

  113. Peterson, W. L. 1991. Helicobacter pylori and peptic ulcer disease. N. Engl. J. Med. 324:1043–1048.

    Article  PubMed  CAS  Google Scholar 

  114. Phadnis, S. H., M. H. Parlow, M. Levy, D. Iiver, C. M. Caulkins, J. B. Connors, and B. E. Dunn. 1996. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect. Immun. 64:905–912.

    PubMed  CAS  Google Scholar 

  115. Pommepuy, M., M. Butin, A. Derrien, M. Gourmelon, R. R. Colwell, and M. Cormier. 1996. Retention of enteropathogenicity by viable but nonculturable Escherichia coli exposed to seawater and sunlight. Appl. Environ. Microbiol. 62:4621–4626.

    PubMed  CAS  Google Scholar 

  116. Pommepuy M., L. Fiksdal, M. Gourmelon, H. Melikechi, M. L. Caprais, M. Cormier, and R. R. Colwell. 1996. Effect of seawater on Escherichia coli β-galactosidase activity. J. Appl. Bacteriol. 81:174–180.

    Article  PubMed  CAS  Google Scholar 

  117. Porter, K. G., and Y. S. Fieg. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 25:943–948.

    Article  Google Scholar 

  118. Postgate, J. R. 1969. Viable counts and viability, p. 611–628. In J. R. Norris and D. W. Ribbons (ed.), Methods in Microbiology. Academic Press, Inc., London, United Kingdom.

    Google Scholar 

  119. Radsimosky, R. 1930. Vorlantige Augaben über die Dichtigheit der berkteriellen Besiedlung einiger Gewasser. Trav. Sta. Biol. Dmiepre. 5:385–402.

    Google Scholar 

  120. Rahman, I., M. Shahamat, P. A. Kirchman, E. Russek-Cohen, and R. R. Colwell. 1994. Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol. 60:3573–3578.

    PubMed  CAS  Google Scholar 

  121. Rahman, I., M. Shahamat, M. A. R. Chowdhury, and R. R. Colwell. 1996. Potential virulence of viable nonculturable Shigella dysenteriae type I. Appl. Environ. Microbiol. 62:115–120.

    PubMed  CAS  Google Scholar 

  122. Ramamurthy, T., R. Garg, S. K. Sharma, G. B. Nair, T. Shimada, T. Takeda, T. Karasawa, H. Kuraziano, A. Pal, and Y. Takeda. 1993. Emergence of novel strains of V cholerae with epidemic potential in Southern and Eastern India. Lancet 341:703–705.

    Article  PubMed  CAS  Google Scholar 

  123. Ravel, J., R. T. Hill, and R. R. Colwell. 1994. Isolation of a Vibrio cholerae transposon-mutant with an altered viable but nonculturable response. FEMS Microbiol. Lett. 120:57–62.

    Article  PubMed  CAS  Google Scholar 

  124. Ravel, J., I. T. Knight, C. E. Monahan, R. T. Hill, and R. R. Colwell. 1995. Temperatureinduced recovery of Vibrio cholerae from the viable but nonculturable state: growth or resuscitation?. Microbiology 141:377–383.

    Article  PubMed  Google Scholar 

  125. Rivera, I. G., M. A. R. Chowdhury, A. Huq, D. Jacobs, M. T. Martins, and R. R. Colwell. 1995. Enterobacterial repetitive intergenic consensus sequences and the PCR to generate fingerprints of genomic DNA from Vibrio cholerae O1, 0139, and non-O1. Appl. Environ. Microbiol. 61:2898–2904.

    PubMed  CAS  Google Scholar 

  126. Rodriguez, G. G., D. Phipps, K. Ishiguro, and H. F. Ridgway. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58:1801–1808.

    PubMed  CAS  Google Scholar 

  127. Rollins, D. M., and R. R. Colwell. 1986. Viable but non-culturable stage of Campylobacter jejuni and its role in survival in the natural aquatic environment. Appl. Environ. Microbiol. 52:531–538.

    PubMed  CAS  Google Scholar 

  128. Rosenberg, M. L., K. K. Hazlet, J. Schaefer, J. C. Wells, and R. C. Pruneda. 1976. Shigellosis from swimming. JAMA 236:1849–1852.

    Article  PubMed  CAS  Google Scholar 

  129. Roszak, D. B., D. J. Grimes, and R. R. Colwell. 1984. Viable but non-recoverable stage of Salmonella enteritidis in aquatic systems. Can. J. Microbiol. 30:334–338.

    Article  PubMed  CAS  Google Scholar 

  130. Roszak, D. B., and R. R. Colwell. 1987. Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51:365–379.

    PubMed  CAS  Google Scholar 

  131. Rottenberg, H. 1979. The measurement of membrane potential and ApH in cells, organelles, and vesicles. Methods Enzymol. 55:547–569.

    Article  PubMed  CAS  Google Scholar 

  132. Sack, D. A., C. O. Tackt, M. B. Cohen, R. B. Sack, G. A. Losonsky, J. Shimko, J. P. Nataro, R. Edelman, M. M. Levine, R. A. Giannella, G. Schiff, and D. Lang. 1998. Validation of a volunteer model of cholera with frozen bacteria as the challenge. Infect. Immun. 66:1968–1972.

    PubMed  CAS  Google Scholar 

  133. Saha, S. K., S. Saha, and S. C. Sanyal. 1991. Recovery of injured Campylobacter jejuni cells after animal passage. Appl. Environ. Microbiol. 57:3388–3389.

    PubMed  CAS  Google Scholar 

  134. Sato, M. I. Z., P. S. Sanchez, I. G. Rivera, and M. T. Martins. 1995. Survival of culturable Vibrio cholerae O1 and non-O1 in seawater, freshwater and wastewater and effect of the water environmental on enterotoxin production. Rev. Microbiol. (Brazil) 26:83–89.

    CAS  Google Scholar 

  135. Shahamat, M., U. Mai, C. Paszko-Kolva, M. Kessel, and R. Colwell. 1993. Use of autoradiography to assess viability of Helicobacter pylori in water. Appl. Environ. Microbiol. 59:1231–1235.

    PubMed  CAS  Google Scholar 

  136. Shiba, T., R. T. Hill, W. L. Straube, and R. R. Colwell. 1995. Decrease in culturability of Vibrio cholerae caused by glucose. Appl. Environ. Microbiol. 61:2583–2588.

    PubMed  CAS  Google Scholar 

  137. Shirai, H., M. Nishibuchi, T. Ramamurthy, S. K. Bhattacharya, S. C. Pal, and Y. Takeda. 1991. Polymerase chain reaction for detection of cholera enterotoxin operon of V cholerae. J. Clin. Microbiol. 29:2517–2521.

    PubMed  CAS  Google Scholar 

  138. Sleightholme, V., and D. Roberts. 1994. Viable but non-culturable V. cholerae O1: a short review. Public Health Lab. Serv. Microbiol. Digest 11:77–80.

    Google Scholar 

  139. Sommerville, C. C., I. T. Knight, W. L. Straube, and R. R. Colwell. 1989. Simple rapid method for direct isolation of nucleic acid from aquatic environment. Appl. Environ. Microbiol. 55:548–559.

    Google Scholar 

  140. Sorscher, E. J., C. M. Fuller, and R. J. Bridges. 1992. Identification of a membrane protein from T84 cells using antibodies made against a DIDS-binding peptide. Am. J. Physiol. 262:C136.

    PubMed  CAS  Google Scholar 

  141. Steinert, M., L. Emödy, R. Amann, and J. Hacker. 1997. Resuscitation of viable but noncultur-able Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 63:2047–2053.

    PubMed  CAS  Google Scholar 

  142. Stevenson, L. H. 1978. A case for bacterial dormancy in aquatic systems. Microb. Ecol. 4:127–133.

    Article  Google Scholar 

  143. Strugger, S. 1948. Fluorescence microscope examination of bacteria in soil. Can. J. Res. Sect. 26: 188–193.

    Article  CAS  Google Scholar 

  144. Tholozan, J. L., J. M. Cappelier, J. P. Tissier, G. Gelattre, and M. Federighi. 1999. Physiological characterization of viable-but-nonculturable Campylobacter jejuni cells. Appl. Environ. Microbiol. 65:1110–1116.

    PubMed  CAS  Google Scholar 

  145. Turpin, P. E., K. A. Maycroft, C. L. Rowlands, and E. M. H. Wellington. 1993. Viable but non-culturable salmonellas in soil. J. Appl. Bacteriol. 74:421–427.

    Article  PubMed  CAS  Google Scholar 

  146. Valentine, R. C., and J. R. G. Bradfield. 1954. The urea method for bacterial viability counts with electron microscope and its relation to other viability counting methods. J. Gen. Microbiol. 11:349–357.

    PubMed  CAS  Google Scholar 

  147. Virta, M., M. Karp, S. Rönnemaa, and E. M. Lilius. 1997. Kinetic measurements of the membranolytic activity of serum complement using bioluminescent bacteria. J. Immunol. Methods 201: 215–221.

    Article  PubMed  CAS  Google Scholar 

  148. Warner, J. M., and J. D. Oliver. 1998. Randomly amplified polymorphic DNA analysis of starved and viable but nonculturable Vibrio vulnificus cells. Appl. Environ. Microbiol. 64:3025–3028.

    PubMed  CAS  Google Scholar 

  149. Weichart, D., J. D. Oliver, and S. Kjelleberg. 1992. Low temperature induced non-culturability and killing of Vibrio vulnificus. FEMS Microbiol. Lett. 100:205–210.

    Google Scholar 

  150. Weichart, D., D. McDougald, D. Jacobs, and S. Kjelleberg. 1997. In situ analysis of nucleic acids in cold-induced nonculturable Vibrio vulnificus. Appl. Environ. Microbiol. 63:2754–2758.

    PubMed  CAS  Google Scholar 

  151. Whitesides, M. D., and J. D. Oliver. 1997. Resuscitation of Vibrio vulnificus from the viable but nonculturable state. Appl. Environ. Microbiol. 63:1002–1005.

    PubMed  CAS  Google Scholar 

  152. Wolf, P. W., and J. D. Oliver. 1992. Temperature effects on the viable but nonculturable state of V vulnificus. FEMS Microbiol. Ecol. 101:33–39.

    Google Scholar 

  153. Xu, H. S., N. Roberts, F. L. Singleton, R. W. Attwell, D. J. Grimes, and R. R. Colwell. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8:313–323.

    Article  Google Scholar 

  154. Xu, H. S., N. C. Roberts, L. B. Adams, P. A. West, R. J. Seibeling, A. Huq, M. I. Huq, R. Rahman, and R. R. Colwell. 1984. An indirect fluorescent antibody staining procedure for detection of Vibrio cholerae serovar O1 cells in aquatic environmental samples. J. Microb. Methods 2: 221–231.

    Article  Google Scholar 

  155. Zimmerman, R., R. Iturriaga, and J. Becker-Birck. 1978. Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration. Appl. Environ. Microbiol. 36:926–935.

    Google Scholar 

  156. ZoBell, C. E. 1946. Marine Microbiology: a Monograph on Hydrobacteriology, p. 41–58. Carnica Botanica Co., Waltham. Mass.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 ASM Press, Washington, D.C.

About this chapter

Cite this chapter

Huq, A., Rivera, I.N.G., Colwell, R.R. (2000). Epidemiological Significance of Viable but Nonculturable Microorganisms. In: Colwell, R.R., Grimes, D.J. (eds) Nonculturable Microorganisms in the Environment. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0271-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0271-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0273-6

  • Online ISBN: 978-1-4757-0271-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics