Skip to main content

Nucleate Boiling of Liquid Helium I on Gallium Single Crystals

  • Chapter
Advances in Cryogenic Engineering

Part of the book series: Advances in Cryogenic Engineering ((ACRE,volume 16))

Abstract

The surface roughness in nucleate boiling is known to be an important parameter. It permits the trapping of vapor or gas which may preexist as an uncondensed phase in cavities prior to nucleation. This behavior is significant for room-temperature liquids because changes in the rms roughness values are known to affect the surface excess temperatures ΔT (above the saturation temperature of the bulk liquid). In contrast, in liquid He I (He4 above the λ point), no marked ΔT differences between various rough surfaces have been found [1] (though polishing caused an increase in ΔT). Optimum surface conditions, however, are desirable for efficient cooling in some components of liquid-helium cryosystems. Therefore, the purpose of the present study was to provide additional details of this anomalous behavior by obtaining nucleate-cooling data for well-defined single-crystal surfaces (Ga). The crystal surface temperature was determined directly, i.e., without additional thermal-contact resistances between the heat-transfer surface and thermometer. This condition was realized by using the gallium single crystal as the resistance thermometer. The first part of this paper considers the experimental program with details of the gallium crystals used. This is followed by results of the study and conclusions concerned with optimum surface treatment for minimum solid excess temperatures, and with data interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. Boissin, J. J. Thibault, J. Roussel, and E. Faddi, in: Advances in Cryogenic Engineering, Vol. 13, Plenum Press, New York (1968), p. 607.

    Google Scholar 

  2. R. I. Boughton and M. Yagub, Phys. Rev. Letters, 20:108 (1968).

    Article  Google Scholar 

  3. T. Frederking and R. Reinmann, Helv. Phys. Acta, 33:999 (1960).

    Google Scholar 

  4. G. K. White, Experimental Techniques in Low Temperature Physics, Oxford, Clarendon Press (1959), p. 107.

    Google Scholar 

  5. B. W. Clement and T. H. K. Frederking, in: Pure and Applied Cryogenics, Vol. 6, Pergamon Press, London (1966), p. 61.

    Google Scholar 

  6. D. N. Lyon, in: International Advances in Cryogenic Engineering, Plenum Press, New York (1965), p. 371.

    Google Scholar 

  7. K. J. Coding and H. Merte, J. Eng. Industry (ASME), 91B:513 (1969).

    Google Scholar 

  8. J. A. Clark, “Cryogenic Heat Transfer,” in: Advances in Heat Transfer, Vol. 5, Academic Press, New York (1968), p. 325.

    Google Scholar 

  9. C. N. Whetstone and R. W. Boom, in: Advances in Cryogenic Engineering, Plenum Press, New York (1968), p. 68.

    Google Scholar 

  10. R. V. Smith, in: Proceedings of 1968 Brookhaven Summer Study on Superconductive Devices and Accelerators, Brookhaven National Laboratory Publ. No. BNL-50155 (C-55), part I, p. 249.

    Google Scholar 

  11. F. A. Mueller, in: Proceedings 2nd International Cryogenic Engineering Conference, Brighton, England (1968) p. 264.

    Google Scholar 

  12. S. S. Kutateladze, “Heat Transfer on Condensation and Boiling,” State Sci. Tech. Publ. Lit. Machinery, Moscow (AEC Transi. 3770, Tech. Info. Serv., Oak Ridge, Tenn.).

    Google Scholar 

  13. P. Spiegler and J. Hopenfeld, Rev. Sci. Instr., 34:308 (1963).

    Article  Google Scholar 

  14. T. H. K. Frederking, in: Advances in Cryogenic Engineering, Vol. 9, Plenum Press, New York (1964), p. 71.

    Google Scholar 

  15. A. Karagounis, Suppl. Bull. U.R. Comm. 1 & 2, Louvain (1956), p. 195.

    Google Scholar 

  16. D. Griffiths and R. Watton, British J. Appl. Phys., 17:535 (1966).

    Article  Google Scholar 

  17. J. S. Goodling and R. K. Irey, in: Advances in Cryogenic Engineering, Vol. 14, Plenum Press, New York (1969), p. 159.

    Google Scholar 

  18. A. P. Dorey, Cryogenics, 5:146 (1965).

    Article  Google Scholar 

  19. R. D. Cummings and J. L. Smith, “Liquid Helium Technology,” in: Pure and Applied Cryogenics, Vol. 6, Pergamon Press, London (1966), p. 85.

    Google Scholar 

  20. A. D. Appleton and J. S. H. Ross, in: Low Temperatures and Electric Power, Bull. I.I.R., Comm. I. Annexe 1969, p. 269.

    Google Scholar 

  21. M. Jakob and W. Linke, Forschg., 4:75 (1933)

    Google Scholar 

  22. M. Jakob, Z. VDI, 76:1161 (1932).

    Google Scholar 

  23. S. G. Bankoff, in: Advances in Chemical Engineering, Vol. 6, Academic Press, New York (1966), p. 49.

    Google Scholar 

  24. L. D. Landau and E. M. Lifshits, Statistical Physics, Pergamon, London (1958), p. 457.

    Google Scholar 

  25. J. Frenkel, Kinetic Theory of Liquids, Dover, New York (1955), p. 366.

    Google Scholar 

  26. J. W. Westwater, in: Advances in Chemical Engineering, Vol. 1, Academic Press, New York (1956), p. 1.

    Chapter  Google Scholar 

  27. E. G. Brentari, P. J. Giarratano, and R. V. Smith, NBS Tech. Note 317 (1965).

    Google Scholar 

  28. J. M. Astruc, P. Perroud, A. Lacaze, and L. Weil, in: Advances in Cryogenic Engineering, Vol. 12, Plenum Press, New York (1967), p. 387.

    Google Scholar 

  29. J. Wilks, The Properties of Solid and Liquid Helium, Clarendon Press, Oxford (1967), p. 404.

    Google Scholar 

  30. R. S. Kagiwada, J. C. Fraser, I. Rudnick, and D. Bergman, Phys. Rev. Letters, 22:338 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Purdy, V., Linnet, C., Frederking, T.H.K. (1971). Nucleate Boiling of Liquid Helium I on Gallium Single Crystals. In: Timmerhaus, K.D. (eds) Advances in Cryogenic Engineering. Advances in Cryogenic Engineering, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0244-6_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0244-6_45

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0246-0

  • Online ISBN: 978-1-4757-0244-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics