Skip to main content

The Microiontophoretic Approach

  • Chapter
Vision in Fishes

Part of the book series: NATO Advanced Study Institutes Series ((NSSA,volume 1))

  • 301 Accesses

Abstract

The term “microiontophoresis” refers to the passage of an electric current through an ionised solution within a glass micro-pipette resulting in the ejection of a substance from the tip of the micropipette. Comprehensive reviews of this method of drug application have been written by Curtis (1965), Salmoiraghi and Weight (1967) and Krnjevic’ (1964; 1971). For solutions of high conductivity, the amount of ionised substance ejected (Q) is a simple function of the total ionic current flowing through the solution:

$$Q = \frac{{It{\tau _n}}}{{zF}}$$

where Q is the number of ion equivalents, I is current in amperes (A), t is time in seconds, z is the valence, F is Faraday’s constant and τn is the transport number. The transport number of a particular ion through the orifice is dependent on the concentration of ions within and just outside the tip of the micropipette. An ideal transport number is 1.0, but experimentally, values ranging from 0.01 to 0.6 have been obtained for pharmacologically active ions released in vitro (see Table 1, Krnjevic 1971).

O day and night, but this is wondrous strange!

Hamlet, Act 1, Sc. V

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bernardi, G., ZieglgMnsberger, W., Herz, A. and Puil, E.A. (1972). Intracellular studies on the action of L-glutamic acid on spinal neurones of the cat. Brain Res. 39: 523–525.

    Article  PubMed  CAS  Google Scholar 

  • Biscoe, T.J., Duggan, A.W., Headley, P.M. and Lodge, D. (1973) Rhythmical field potentials induced in the inferior olive complex by iontophoretically applied harmaline and other unrelated alkaloids. Br. J. Pharmacol. 49: 174P–175P.

    PubMed  CAS  Google Scholar 

  • Cervetto, L. and Mac Nichol, E.F. (1972). Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science 178: 767–768.

    Article  PubMed  CAS  Google Scholar 

  • Cull-Candy, S.G. and Usherwood, P.N.R. (1973). Two populations of glutamate receptors on locust muscle fibres. Nature (New Biol.) 246: 62–64.

    CAS  Google Scholar 

  • Curtis, D-.R. (1964). Microelectrophoresis. Physical Techniques in Biological Research, Vol. V, Electrophysiological Methods, Part A, edited by W.L. Nastuk, Academic Press, New York, pp. 144–190.

    Google Scholar 

  • Curtis, D.R. (1968). A method for assembly of “parallel” micro-pipettes. Electroenceph. clin. Neurophysiol. 24: 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R., Duggan, A.W., Felix, D., Johnston, G.A.R., Tebëcis, A.K. and Watkins, J.C. (1972). Excitation of mammalian central neurones by acidic amino acids. Brain Res. 41: 283–301.

    Article  PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Eccles, R.M. (1958). The excitation of Renshaw cells by pharmacological agents applied electrophoretically. J. Physiol. 141: 435–445.

    PubMed  CAS  Google Scholar 

  • Curtis, D.R. and Johnston, G.A.R. (1974). Amino acid transmitters in the mammalian central nervous system. Ergeb. Physiol. 69: 97–188.

    PubMed  CAS  Google Scholar 

  • de Montigny, C. and Lamarre, Y. (1973). Rhythmic activity induced by harmaline in the olivo-cerebello-bulbar system. Brain Res. 53: 81–95.

    Article  PubMed  Google Scholar 

  • Frederickson, R.C.A., Jordan, L.M. and Phillis, J.W. (1971). The action of noradrenaline on cortical neurones: effects of pH. Brain Res. 35: 556–560.

    Article  PubMed  CAS  Google Scholar 

  • Godfraind, J.M., Kawamura, H. and Krnjević, K. and Pumain, R. (1971). Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones. J. Physiol. 215: 199–222.

    PubMed  CAS  Google Scholar 

  • Goodman, L.S. and Gilman, A. (1970). The Pharmacological Basis of Therapeutics. 4th ed. Macmillan, New York, p. 504–505.

    Google Scholar 

  • Haldeman, S., Huffman, R.D., Marshall, K.C. and McLennan, H. (1972). The antagonism of the glutamate-induced and synaptic excitations of thalamic neurones. Brain Res. 39: 419–425.

    Article  PubMed  CAS  Google Scholar 

  • Herz, A., Zieglgänsberger, W. and Färber, G. (1969). Microelectrophoretic studies concerning the spread of glutamic acid and GABA in brain tissue. Exp. Brain Res. 9: 221–235.

    Article  PubMed  CAS  Google Scholar 

  • Kao, C.Y. (1966). Tetrodotoxin, saxitoxin, and their significance in the study of excitation phenomena. Pharmacol. Rev. 18: 997–1049.

    PubMed  CAS  Google Scholar 

  • Kehoe, J. (1972). The physiological role of three acetylcholine receptors in synaptic transmission in Aplysia. J. Physiol. 225: 85–172.

    PubMed  CAS  Google Scholar 

  • Krnjevic’, K. (1964). Micro-iontophoretic studies on cortical neurones. Int. Rev. Neurobiol. 7: 41–98.

    Article  Google Scholar 

  • Krnjević, K. (1971). Microiontophoresis. Methods of Neurochemistry, Vol. 1, edited by R. Fried, Marcel Dekker, New York, p. 129–172.

    Google Scholar 

  • Krnjević, K., Pumain, R. and Renaud, L. (1971a). Effects of Ba2+ and tetraethylammonium on cortical neurones. J. Physiol. 215: 223–245.

    PubMed  Google Scholar 

  • Krnjević, K., Pumain, R. and Renaud, L. (1971b). The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. 215: 247–268.

    PubMed  Google Scholar 

  • Krnjević, K. and Schwartz, S. (1966). The action of γ-aminobutyric acid on cortical neurones. Exp. Brain Res. 3: 320–336.

    Article  Google Scholar 

  • Lamarre, Y. and Puil, E. (1974). Induction of rhythmic activity by harmaline. Can. J. Physiol. Pharmacol. 52: 905–908.

    Article  PubMed  CAS  Google Scholar 

  • Llinas, R., Baker, R. and Sotelo, C. (1974). Electrotonic coupling between neurons in the cat inferior olive. J. Neurophysiol. 37: 560–571.

    PubMed  CAS  Google Scholar 

  • Lowagie, C. and Gerschenfeld, H.M. (1974). Glutamate antagonists at a crayfish neuromuscular junction. Nature 48: 533–535.

    Article  Google Scholar 

  • Noell, W.K. (1959). The visual cell: Electric and metabolic manifestations of its life processes. Am. J. Ophthalmol. 48: 347–370.

    PubMed  Google Scholar 

  • Noell, W.K. and Lasansky, A. (1959). Effects of electrophoretically applied drugs and electrical currents on the ganglion cell of the retina. Fed. Proc. 18: 115.

    Google Scholar 

  • Mc Ilwain, H., Harvey, J.A. and Rodriguez, G. (1969). Tetrodotoxin on the sodium and other ions of cerebral tissues, excited electrically and with glutamate. J. Neurochem. 16: 363–370.

    Article  CAS  Google Scholar 

  • McLennan, H. (1970). Synaptic Transmission, 2nd ed. Saunders, Philadelphia.

    Google Scholar 

  • Murakami, M., Ohtsu, K. and Ohtsuka, T. (1972). Effects of chemicals on receptors and horizontal cells in the retina. J. Physiol. 227: 899–913.

    PubMed  CAS  Google Scholar 

  • Naranjo, C. Psychotropic properties of harmala alkaloids. Ethnopharmacologic search for psychoactive drugs. U.S. Public Health Serv. Pub. No. 1645, edited by D.H. Efron, B. Holmstedt and N.S. Kline. Gov. Pr. Of., Washington, D.C., p. 385–391.

    Google Scholar 

  • Okamoto, K. and Quastel, J.H. (1970). Tetrodotoxin-sensitive uptake of ions and water by slices of rat brain in vitro. Biochem. J. 120: 37–47.

    PubMed  CAS  Google Scholar 

  • Perrin, D.D. (1965). Dissociation constants of organic bases in aqueous solution, Butterworths, London.

    Google Scholar 

  • Phillis, J.W. (1970). The pharmacology of synapses, Pergamon Press, New York.

    Google Scholar 

  • Puil, E., Reiffenstein, R.J. and Triggle, C. (1974). Epileptiform after discharges and chemical responsiveness of cortical neurones. Electroencephalogr. Clin. Neurophysiol. 36: 265–273.

    Article  CAS  Google Scholar 

  • Salmoiraghi, G.C. and Stefanis, C.N. (1967). A critique of ionto-phoretic studies of central nervous system neurones. Int. Rev. Neurobiol. 10: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Salmoiraghi, G.C. and Weight, F. (1967). Micromethods in neuropharmacology: an approach to the study of anesthetics. Anesthesiology 28: 54–64.

    Article  PubMed  CAS  Google Scholar 

  • Straschill, M., and Perwein, J. (1969). The inhibition of retinal ganglion cells by catecholamines and y-aminobutyric acid. Pflügers Arch. 312: 45–54.

    Article  PubMed  CAS  Google Scholar 

  • Werman, R. (1966). Criteria for identification of a central nervous system transmitter. Comp. Biochem. Physiol. 18: 745–766.

    Article  PubMed  CAS  Google Scholar 

  • Werman, R., Davidoff, R.A. and Aprison, M.H. (1968). The inhibitory action of glycine on spinal neurons in the cat. J. Neurophysiol. 31: 81–95.

    PubMed  CAS  Google Scholar 

  • Zieglgsnsberger, W. and Herz, A. (1971). Changes of cutaneous receptive fields of spino-cervical-tract neurones and other dorsal horn neurones by microelectrophoretically administered amino acids. Exp. Brain Res. 131: 111–126.

    Google Scholar 

  • Zieglgänsberger, W. and Puil, E.A. (1972). Tetrodotoxin interference of CNS excitation by glutamic acid. Nature (New Biol.) 239: 204–205.

    Google Scholar 

  • Zieglgänsberger, W. and Puil, E.A. (1973a). Actions of glutamic acid on spinal neurones. Exp. Brain Res. 17: 35–49.

    Article  PubMed  Google Scholar 

  • Zieglgänsberger, W. and Puil, E.A. (1973b). Intracellular investigations on the effect of microelectrophoretically applied glutamate antagonists upon spinal neurones of the cat. Naunyn -Schmiedebergs Arch. Pharmakol. 275: Suppl. R89. 99

    Google Scholar 

  • Zieglgänsberger, W. and Reiter, Ch. (1974). A cholinergic mechanism in the spiral cord of cats. Neuropharmacology 13: 519–527.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Pull, E. (1975). The Microiontophoretic Approach. In: Ali, M.A. (eds) Vision in Fishes. NATO Advanced Study Institutes Series, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0241-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0241-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0243-9

  • Online ISBN: 978-1-4757-0241-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics